Роль мутации в эволюции живого

Автор работы: Пользователь скрыл имя, 14 Ноября 2009 в 18:42, Не определен

Описание работы

1. Введение
2. Развитие учения об эволюции и современные взгляды на нее.
3. Эволюционные процессы.
4. Методологическая часть.
5. Выводы

Файлы: 1 файл

Мутация-готовый.doc

— 208.50 Кб (Скачать файл)

    Очень многие растения, например плодовые и  ягодные культуры, размножаются вегетативным путем. У них любая соматическая мутация, возникшая в тканях, из которых  может развиться новое растение, будет передана дальнейшим поколениям. У плодовых растений хорошо изучены мутации, происходящие в клетках точек роста, так называемые почковые мутации. Первый, созданный в 1888 г. И. В. Мичуриным сорт яблони Антоновка шестисотграммовая ведет свое начало от почковой мутации, обнаруженной у сорта Антоновка могилевская белая.

  По причине возникновения мутации делятся на спонтанные и индуцированные. Спонтанными называют мутации, появление которых не контролируется человеком. Строго говоря, назвать их случайными нельзя, так что формулировка "неконтролируемые человеком" корректнее. Как уже отмечалось выше, мутагенез бывает управляемым внутри- и трансклеточным самомутагенезом, программа которого заложена в первичной структуре ДНК (он опосредован центриолями и МГЭ), и истинно случайным, например, действие УФ-излучения или жестких рентгеновских лучей.

Причины индукции спонтанных мутаций не ясны. Долгое время полагали, что к числу  индуцирующих факторов относится естественный фон ионизирующих облучений, образуемый доходящими до поверхности земли космическими лучами..., поступающими в малых количествах в организм из окружающей среды. Однако, как показали расчеты, у дрозофилы естественный радиационный фон может быть ответственен только за 0.1% спонтанных мутаций. Хотя, по мере увеличения продолжительности жизни организма воздействие естественного фона может накапливаться, и у

 

 
человека от 1/4 до 1/10 спонтанных мутаций может  быть отнесено за счет естественного фона радиации.  

Второй  причиной спонтанных мутаций являются случайные повреждения хромосом и генов в ходе нормальных метаболических (обменных) процессов, происходящих в клетке. По многочисленным данным спонтанные мутации возникают во время деления хромосом и репликации ДНК. Считают вероятным, что спонтанные мутации представляют чаще всего следствие случайных ошибок в функционировании молекулярных механизмов.  
Третьей причиной спонтанных мутаций является перемещение по геному мобильных элементов, которые могут внедриться в любой ген и вызвать в нем мутацию. По расчетам американского генетика Мелвина Грина около 80% спонтанных мутаций приходится на счет перемещений мобильных элементов.

  Под индуцированными мутациями понимают мутации, вызванные искусственно, сознательными действиями человека. В отличии от управляемого мутагенеза (центриоли и МГЭ), в этом случае, по видимому, вероятность замены одного нуклеотида на другой не зависит от его локализации в молекуле ДНК. Это случай так называемого неуправляемого мутагенеза. Мутагенов весьма много: жесткие рентгеновские лучи, УФ и ИК-лучи, иприт, этиловый спирт, никотин, наркотики, гормоны, вырабатываемые при стрессе и т. д. 4

Итальянские учёные в течение 3 лет проводили  опыты на животных и выяснили, что  кокаин и экстази не только вызывают наркозависимоть, повышают риск возникновения  рака, но и вызывают генетические мутации.  
"Оказывается, экстази и кокаин более опасны, чем мы думали, — заявил Джорджио Бронзетти (Giorgio Bronzetti), главный учёный Национального центра биотехнологических исследований (Consiglio Nazionale delle Ricerche — CNR). — Эти наркотики на вершине их токсикологического воздействия атакуют ДНК, провоцируя мутации и изменения генетического материала".    

Строго  говоря, грань между индуцированными  и спонтанными мутациями условна. Все живые организмы в какой-то мере подвергаются действию мутагенов, например, получают небольшие дозы природного (солнечного) УФ-излучения, вдыхают радон, что, по моему мнению, является одной из причин деградации первичной структуры ДНК, и, как следствие, старения.

Изучение  мутагенного действия ионизирующих излучений показало, что у всех исследованных организмов они вызывают многочисленные генные мутации и перестройки хромосом и что частота индуцированных мутаций зависит в основном от дозы радиации.  
При этом не имеет большого значения, в один ли прием дана та или иная доза или она разбита на дробные порции, разделенные во времени - мутагенный эффект в целом соответствует общей дозе облучения.

_____________________________________________

4Гершензон, 1983, с. 237 
    

 Комментарии  - указанный эффект означает, например, что люди, получившие большую  дозу облучения на Чернобыльской  АЭС, и погибшие вследствие этого, и люди, умершие "естественной" смертью в преклонном возрасте, умерли от одной и той же причины - необратимого накопления мутаций первичной структуры молекул ДНК их клеток. Разница состоит лишь в том, что люди, облучившиеся на Чернобыльской АЭС, получили за несколько часов ту дозу, которую остальные получают за несколько десятков лет. Это грубый пример, не учитывающий управляемый самомутагенез, тем не менее, хорошо отражает качественную сторону явления.  
     В частности, это означает, что естественной смерти не бывает. Смерть от старости естественна не более, чем смерть от ДДП.
 

3.2. Давление отбора на процессы

преобразования  генетических

структур  в популяциях. 

    Мутационный процесс неустанно ведет к  возникновению широкого спектра  внутрипопуляционной наследственной изменчивости. В этом спектре важнейшее место занимают вредные мутации вплоть до леталей, отметаемых отбором. Вместе с тем естественный отбор, опираясь на полезные мутации, перестраивает наследственные структуры популяций и видов и одновременно сохраняет наследственные особенности вида от разрушающего действия мутаций.

    Дарвиновская  теория естественного отбора основана на том принципе, что количество оставляемых потомков зависит от качественных особенностей родителей. Генетическая теория естественного  отбора также признает, что организмы разных наследственных типов в популяции имеют дифференциальное переживание и оставляют различное количество потомков. Для изучения интенсивности отбора введено понятие о коэффициенте селекции s, который измеряет для того или иного наследственного типа в популяции данного поколения степень преимущественности или неуспеха при оставлении потомков следующего поколения. Предположим, что в популяции генотипы с оставляют одинаковое количество потомков. В то же время гомозиготы по рецессивному аллелю аа испытывают давление отрицательного отбора с интенсивностью s=0,01, т. е. вместо ожидаемой 1000 они составляют 999 потомков. В таких условиях частота аллеля А в популяции будет возрастать, а концентрация аллеля а будет снижаться в процессе смены поколений. Для генотипов АА и Аа можно сказать, что их адаптивная ценность равна 1, в то время как для генотипа аа она равна 0,999. В случае одинаковой жизнеспособности, т. е. когда адаптивная ценность генотипов АА, Аа и аа равна 1, коэффициент селекции равен 0. В случае стерильности или летальности гомозигот аа их адаптивная ценность равна 0, а коэффициент селекции равен 1.

    Процесс отбора наиболее эффективен, когда  он направлен против доминантных  мутаций, при условии их полного  проявления и выражения. В этих случаях  при коэффициенте селекции, равном 1, популяция может избавиться от доминантных изменений всего лишь за одно поколение. Так, у человека имеется немало доминантных наследственных заболеваний, которые не позволяют из носителям иметь детей. Это в значительной мере касается, например, заболевания ахондроплазии (карликовость). Все мутантные особи этого рода оказывают очень малое влияние на генотипический состав популяции человека в следующем поколении.

    В тех случаях, когда проявление вредного доминантного гена запаздывает и его носители успевают оставить потомство, они могут оказывать значительное неблагоприятное влияние на состав будущего поколения, полностью передавая наследственное заболевание своим потомкам. Для такого рода болезней возможно применение генетической профилактики. Зная наследствование этих заболеваний и зная трагическую участь детей, можно советовать отказаться от их рождения.

    Отбор против рецессивных мутаций оказывается  более трудным делом. Рассмотрим пример с аллелем альбинизма у  человека. По статистическим данным, в  Великобритании среди 20000 детей рождается  один альбинос (0,00005). Концентрация аллеля альбинизма, следовательно, равна 0,007. Концентрация гена нормальной пигментации в этой популяции составляет 0,993. Эти данные позволяют рассчитать число гетерозигот, которое равно 1,38%. В такой популяции число гетерозигот (Аа) в 276 раз больше числа гомозигот.

    Таким образом, характерным различием между отбором против доминантов и против рецессивов служит то, что в первом случае все аллели подвержены отбору, во втором только их небольшая часть. Для рецессивных мутаций существует обширная зона гетерозигот, пребывая в которой они ускользают от действия отбора. Поскольку зона гетерозигот гораздо шире зоны гомозигот по рецессивам, эффект отбора в этом случае оказывается очень затруднительным.

    Рассмотрим  наиболее благоприятный случай отрицательного отбора, когда коэффициент селекции равен 1, т. е. гомозиготы или гибнут или оказываются полностью стерильными. Возьмем в качестве исходной популяцию, где концентрация рецессивного аллеля составляет 0,5. Очевидно, что распределение генотипов в такой популяции будет иметь вид 25%АА+50%с+25%аа. Гетерозиготы (Аа) в этом случае встречаются в популяции в два раза чаще гомозигот (аа, АА).

    При коэффициенте селекции, равном 1, потомство  в такой популяции будет получаться только от особей АА и Аа. В табл. 1 показано, что такой отбор приведет во втором поколении к тому, что концентрация аллеля а упадет до 33%, а распределение генотипов примет вид: 44,44% АА+     44,44% Аа+11,12% аа. В такой популяции число гетерозигот (Аа) в 4 раза превышает число гомозигот (аа).

    Вначале действие отбора на такую популяцию, благодаря высокой исходной концентрации аллеля а, осуществляется вполне эффективно. За 9 поколений отбора (табл. 1) концентрация аллеля а уменьшается в 5 раз, с 50 до 10%. Однако возрастает зона недопустимости аллеля для отбора. На 9 поколении количество гетерозигот уже в 18 раз больше количества рецессивных гомозигот, в то время как в исходном поколении оно было больше всего лишь в два раза. Это резко затрудняет деятельность отбора. Так, для того чтобы уменьшить концентрацию аллеля а в два раза (от 0,020 до 0,010), необходимо уже 50 поколений отбора. В последнем из рассматриваемых, сотом поколении, количество гетерозигот (Аа) в 196 раз превышает число гомозигот (аа).

    Разительные различия в эффективности отбора против доминантных мутаций и  против рецессивных показаны на рис. 1. Как уже указывалось выше, при коэффициенте селекции, равном 1, все доминанты выбрасываются из популяции. При том же коэффициенте селекции против рецессивных гомозигот после 10 поколений отбора их число падает всего лишь в 4 раза. На рис. 1 показан ход падения числа гомозигот (аа) по всем 10 поколениям отбора.

    Рассматривая  процессы отбора по изменениям концентраций отдельных генов, мы упрощаем процессы, идущие при отборе в природе и  при искусственной селекции. Реальный процесс отбора идет на уровне генотипов в целом (особей), а не на уровне отдельных аллелей. Эффекты такой селекции, которая может быть оценена по количественным признакам, более сложны и редко модифицируются средой. В этих случаях эффективность отбора во многом определяется степенью наследуемости признака. Во многих случаях выраженность количественных признаков (продуктивность, урожайность и т. д.) зависит от положительного влияния внешней среды. Та компонента признака, которая вызвана внешней средой и является модификационной, не передается по наследству. Такие модификации могут маскировать генотипические свойства особи и этим тормозить эффективный отбор. На рис. 2 представлен результат отбора в потомстве двух фенотипически одинаковых популяций. На левой части рисунка дан ход селекции при полной наследуемости признака. Правая половина рисунка иллюстрирует такой же отбор, но при 20%-ной наследуемости признака. Во всех поколениях отбирались особи с максимальным проявлением признака. Мы видим, насколько различны итоги селекции даже в пределах всего лишь первых 4 поколений. 

3.3. Принципы динамического равновесия

между мутационным процессом  и

естественным  отбором. 

    Изменения в генетических структурах популяций  всегда происходят под влиянием сложного комплекса эволюционных факторов. Очень важное значение имеет соотношение отбора и давления мутаций. Если данный аллель поддерживается отбором, тогда носители этого аллеля, будучи более приспособленными, характеризуются преимущественным размножением. В результате отбор вытесняет все другие аллели. Однако, как показывает элементарная теория, в этих условиях, но при наличии мутаций отбор не в состоянии целиком утвердить в популяции благоприятный аллель, т. е. концентрация такого аллеля никогда не достигнет 100%. В такой популяции, где мутации противоборствуют отбору, концентрация данного аллеля установится на том или ином равновесном уровне, отражая взаимодействие обоих факторов.

Информация о работе Роль мутации в эволюции живого