Мейоз и его генетическая сущность

Автор работы: Пользователь скрыл имя, 10 Июня 2015 в 10:00, контрольная работа

Описание работы

Мейоз (от греч. мейозис - уменьшение) - способ деления клеток, приводящий к уменьшению в них числа хромосом вдвое. Мейоз служит ключевым звеном гаметогенеза у животных и спорогенеза у растений, в результате которого из диплоидных клеток образуются гаплоидные клетки. Мейоз протекает сходно почти у всех организмов. Он состоит из двух последовательных клеточных делений - мейоза I (первое деление) и мейоза II (второе деление), разделенных непродолжительным периодом интеркинеза. При этом репликация ДНК предшествует лишь первому делению.

Файлы: 1 файл

генетика.docx

— 1.76 Мб (Скачать файл)

Y-хромосома передается от отца  всем его сыновьям, и только  им. Следовательно, для генов, содержащихся  только в Y-хромосоме, характерно  голандрическое наследование, т.е они передаются от отца к сыну и проявляются у мужского пола.

У человека в Y-хромосоме содержатся  по крайней мере три гена, один из которых необходим для дифференциации семенников, второй требуется для проявления антигена гистосовместимости, а третий оказывает влияние на размер зубов. Y-хромосома имеет немного признаков, среди которых есть патологические. Патологические признаки наследуются по параллельной схеме наследования (100%-ое проявление по мужской линии). К ним относят:

1) облысение;

2) гипертрихоз (оволосенение козелка  ушной раковины в зрелом возрасте);

3)  наличие перепонок на нижних конечностях;

4) ихтиоз (чешуйчатость и пятнистое  утолщение кожи).

Наследование признаков, контролируемых полом

Имеется ряд признак, контролируемых генами, расположенными в аутосомах, однако для проявления этих признаков необходима определенная среда, создаваемая генами, находящимися в половых хромосомах (например, гены, определяющие мужские признаки, находятся в аутосомах, и их фенотипические эффекты маскируются наличием пары Х-хромосом, в присутствии одной Х-хромосомы мужские признаки проявляются. Такие признаки называются обусловленными или контролируемыми полом. Появление лысины - аутосомно-доминантный признак, но проявляется практически только у мужчин при наследовании, контролируемом полом, у женщин подавляются гены, детерминирующие рост бороды.

Хромосомная теория наследственности

В работах на плодовой мушке Drosophila melanogaster было установлено, что гены по признаку совместной их передачи потомкам подразделяются на 4 группы. Число таких групп сцепления равно количеству хромосом в гаплоидном наборе. Можно заключить, что развитие признаков, которые наследуются сцеплено, контролируется генами одной хромосомы. Этот вывод обосновывается также данными следующих наблюдений. Скрещивание серой мухи (В) с нормальными крыльями (V) и черной мухи (в) с зачаточными крыльями (v) дает в 1-ом поколении серых гибридов с нормальными крыльями (B1V / bv). При скрещивании самца-гибрида 1-го поколения с черной самкой с зачаточными крыльями (bb / vv) рождаются особи 2 видов, аналогичных исходным родительским формам, причем в равном количестве.

Полученные в проведенных скрещиваниях данные нельзя объяснить независимым наследованием признаков. Рассматриваемые совместно результаты обоих скрещиваний убеждают в том, что развитие альтернативных признаков контролируется различными генами, и сцепленное наследование этих признаков объясняется локализацией генов в одной хромосоме.

Основные положения хромосомной теории наследственности, сформулированной Т.Г. Морганом, заключаются в следующем.

1. Гены располагаются в хромосомах; различные хромосомы содержат  неодинаковое число генов каждой  из негомологичных хромосом уникален.

2. Аллельные гены занимают определенные  и идентичные локусы гомологичных  хромосом.

3. В хромосоме гены располагаются  в определенной последовательности  по ее длине в линейном порядке.

4. Гены одной хромосомы образуют  группу сцепления, благодаря чему  имеет место сцепленное наследование  некоторых признаков; сила сцепления  находится в обратной зависимости  от расстояния между генами.

5. каждый биологический вид характеризуется  специфичным набором хромосом  кариотипом.

18. Проблемы регуляции  пола у животных

Проблема регуляции пола вытекает из необходимости увеличения продукции животноводства за счет преимущественного получения особей одного вида, дающих более высокий выход молока, мяса, шерсти, яиц и т. д. Так, в молочном скотоводстве более желательно рождение телочек, а в мясном — бычков, так как они быстрее растут. От высокоценных племенных быков и коров целесообразно получать мужских потомков для более быстрого размножения их генотипов. В яичном птицеводстве экономически более выгодно получение курочек. В связи с этими практическими потребностями исследователи не только стремятся познать механизмы определения пола, но и изучают возможности искусственного регулирования пола.

Необходимо отметить, что в отношении крупных животных с внутриутробным развитием плодов эта проблема еще не решена. Регуляция соотношения полов у млекопитающих может быть достигнута путем разделения спермы на две фракции: первую — содержащую в спермиях Х-хромосому и вторую — содержащую Y-хромосому. Оплодотворение самок одной из этих фракций будет давать приплод одного пола. Проводились эксперименты по разделению спермы на указанные фракции центрифугированием, электрофорезом и седиментацией (осаждением) с помощью аминокислого гистидина. Осеменение самок крольчих, например, более легкой и более подвижной фракцией приводило к сдвигу в сторону мужского пола. Однако полного сдвига в соотношении полов сделано не было. Разрабатывается метод количественного определения ДНК в спермиях путем измерения интенсивности флуоресценции ядер. Полученные результаты, как считают авторы этого метода, могут стать предпосылкой для успешного разделения спермиев у млекопитающих на несущиеX-илиY-хромосому.

-) Партеногенез. Это развитие организма без оплодотворения. Получение особей одного пола может быть достигнуто при развитии эмбрионов из отцовских (андрогенез) или материнских (гиногенез) гамет. Так, под руководством Б. Л. Астаурова были проведены эксперименты по андрогенезу у тутового шелкопряда. Неоплодотворенные яйца шелкопряда подвергали тепловому шоку и облучали рентгеном, тем самым разрушали их ядра, не повредив цитоплазму. Затем эти яйца осеменяли. Зигота формировалась путем слияния ядер двух проникших в яйцо спермиев, развившиеся из нее особи имели признаки только отцовского вида.

В другом варианте экспериментов неоплодотворенные и еще не прошедшие редукционного деления яйца нагревали, останавливая тем самым мейоз и сохраняя диплоидность набора хромосом. Из таких яиц без оплодотворения (партеногенетически) развивались только самки, унаследовавшие признаки матери. Девственное развитие (партеногенез) в естественных или спонтанных условиях встречается у птиц. И. В. Кудрявцев, 3. А. Ощепкова, А. К. Голубев и др. на основании экспериментов, проведенных на курах разных пород, пришли к выводу, что существуют генетические предпосылки селекции на получение жизнеспособных особей — партеногенов и создание линий с высокой предрасположенностью к партеногенезу. При этом все вылупляющиеся цыплята оказываются петушками. Отбор на повышение частоты партеногенеза, проведенный в двух линиях индеек, дал следующие результаты. Способность яиц к партеногенезу возросла с 1,1 до 18,6 % в первой линии ис4до21,1%во второй. Значение партеногенеза не только в том, что он позволяет получить потомство одного пола, но и в том, что использование этого явления дает возможность получить особей, идентичных генотипу одной из родительских форм.

Генетические методы раннего определения пбла. Определение пола в раннем периоде онтогенеза в отдельных случаях весьма целесообразно. Так, при производстве бройлерных (мясных) цыплят используют только петушков. Однако в раннем возрасте различить петушков и курочек трудно. Для решения этого вопроса еще в 20—30-х годах нашего столетия использовали сцепленную с полом окраску кур для различения пола у суточных цыплят. Скрещивали, например, золотистых петухов с серебристыми курами. Из яиц вылуплялись цыплята — одни желтые, другие зеленовато-белые: первые — курочки, вторые — петушки.

Используя явление сцепленного с полом наследования, Пеннет в Англии создал породу кур камбар. Вылупившиеся петушки этой породы гораздо более светлой окраски, чем курочки, у которых светлый фон пуха имеет темноватый пятнистый рисунок.

А. Серебровский изучил признак полосатости у кур и установил, что он детерминирован геном, локализованным в половой хромосоме. Поэтому при определенных скрещиваниях у гемизиготных петушков он встречается очень редко. В других вариантах скрещиваний все цыплята-петушки имели светлое пятно на затылке, а курочки были лишены его, или на пухе петушков имелись темные пятна, у курочек — нет. Эти различия обусловливаются доминантным геном В, локализованным в половой Х-хромосоме.

Наследственный детерминизм в окраске был найден у гусей — один пол белый, другой — серый.

В настоящее время разработан способ распознавания пола цыплят по строению клоаки.

У крупных малоплодных животных (крупный рогатый скот, лошади) разработаны методы раннего определения пола, основанные на микрохирургическом получении клеток трофобласта у эмбрионов или взятии амниотической жидкости с последующим цитогенетическим анализом состава половых хромосом. В последнее время предложено еще несколько методов. Среди них особого внимания заслуживает метод молекулярного зондирования. Он был, в частности, применен для определения пола у эмбрионов коровы. Суть метода такова. С использованием ферментов рестриктаз расщепляют молекулу ДНК Y-хромосомы и включают ее фрагменты в состав молекулы ДНК плазмиды. Затем плазмиду вводят в бактерии, где они реплицируются, получают клоны необходимых фрагментов ДНК, содержащиеY-специфичные участки. Таким образом, был выделен фрагмент ДНКY-хромосомы и на его основе получен молекулярный зонд. Для обнаружения зонда при его объединении с идентичными участкамиY-хромосомы в его состав включили молекулу биотина или радиоактивную метку. Для выявления присутствия биотина используют метод иммуноферментного анализа. Для определения пола зародыша от него отсекают 10—15 клеток трофобласта на 7—8-м дне развития, обрабатывают их молекулярным зондом с биотином и соответствующими антителами. Ядра эмбриональных клеток самцов приобретают при этом бурую окраску, четко видимую в микроскоп. При аналогичной обработке цвет ткани самок не меняется.

19.ДНК: строение, механизм  синтеза, значение

ДНК – самый крупный биополимер, содержащий до 108–109 мономеров – дезоксирибонуклеотидов, которые содержат сахар – дезоксирибозу. В состав ДНК входит 4 типа дезоксирибонуклеотидов: аденин – А, тимидин – Т, гуанин – G, цитозин – С.

АТФ (аденозинтрифософорная кислота, аденозинтрифосфат) – нуклеотид (рис. 28), образованный аденозином и 3 остатками фосфорной кислоты. Выполняет в организмах роль универсального аккумулятора энергии. Под действием ферментов фосфатные группы отщепляются от АТФ с освобождением энергии, благодаря которой происходят мышечные сокращения, синтетические и другие процессы жизнедеятельности. 
В молекуле ДНК, состоящей из двух полинуклеотидных цепочек, выделяют первичную, вторичную, третичную и т. д. структуры. 
Первичная структура представляет собой линейную последовательность дезоксирибонуклеотидов в одной цепочке. В такой форме в природе ДНК не существует, но именно первичная структура (последовательность нуклеотидов) определяет все ее свойства. Вторичная структура – две полинуклеотидовые цепочки, каждая из которых закручена в спираль вправо и обе закручены вправо вокруг одной оси. Две цепочки удерживаются рядом за счет водородных связей между азотистыми основаниями разных цепочек. Азотистые основания, образующие пары по принципу Чаргаффа (а это всегда одно пуриновое и одно пиримидиновое) , называются комплементарными: А = Т; G = С. Адениновый и тимидиновый соединяются двумя водородными связями, а гуаниновый и цитозиновый – тремя. Комплементарность (от лат. комплементум – дополнение) – пространственная взаимодополняемость молекул или их частей, приводящая к образованию водородных связей. Наиболее ярко комплементарность проявляется в строении нуклеиновых кислот, где 2 полинуклеотидные цепи в результате комплементарного взаимодействия пар пуриновых и пиримидиновых оснований (А–Т, Г–Ц) образуют двуспиральную молекулу. Комплементарность лежит в основе многих явлений, связанных с «узнаванием» на молекулярном уровне (ферментативного катализа, самосборки биологических структур, матричного синтеза полинуклеотидов, молекулярных механизмов иммунитета) . Комплементарные структуры подходят друг к другу как ключ к замку.Правило Э. Чаргаффа: в любых молекулах ДНК молярная сумма пуриновых оснований (аденин + гуанин) равна сумме пиримидиновых оснований (цитозин + тимин) , т. е. молярное содержание аденина равно таковому тимина, а гуанина – цитозина. Из правила Чаргаффа следует, что нуклеотидный состав ДНК разных видов может варьировать лишь по суммам комплементарных оснований. Правила Чаргаффа было использовано при построении модели структуры ДНК. Третичная структура ДНК и структуры более высокого порядка представляют собой дальнейшую спирализацию и суперспирализацию молекулы ДНК.

Функции ДНК:

* Молекулы ДНК хранят (содержат) наследственную информацию (программу) о структуре специфических для  каждого организма белков. 
* Молекулы ДНК обеспечивают передачу наследственной информации от клетки к клетке, от организма к организму. 
* Молекулы ДНК участвуют в реализации генетической информации, т. е. участвуют в процессе синтеза полипептидов.

В процессе биологического синтеза ДНК на матрице аналогичной молекулы ДНК образуется такая же молекула, и количество ДНК удваивается. Поэтому процесс биосинтеза ДНК получил название редупликации или репликации.

Принцип комплементарности (дополнительности), по Уотсону и Крику, заложен в самом строении: ДНК. Дж. Уотсоном и Ф. Криком было постулировано, что репликация ДНК должна происходить полуконсервативным способом, то есть путем раскручивания двойной спирали и синтеза новых, комплементарных исходной полинуклеотидных цепочек на каждой нити. Именно этот механизм и был доказан экспериментально путем введения в ДНК-матрицу тяжелого азота (радиоактивной метки) и анализа ДНК последующих поколений при помощи центрифугирования в градиенте плотности хлористого цезия или методом авторадиографии. ДНК синтезируется из дезоксинуклеозидтрифосфатов, которые соединяются в полинуклеотидную цепь с отщеплением пирофосфата. Эта реакция протекает на матрице одноцепочечной предобразованной ДНК под действием фермента ДНК-полимеразы, причем синтезирующаяся: дезоксирибополинуклеотидная цепь дочерней ДНК строго комплементарна матричной цепи. ДНК-полимераза, впервые выделенная из Е. coli, хорошо изучена. Ее молекулярный вес составляет 110 000 дальтонов, под действием трипсина она распадается на 2 фрагмента — активный и неактивный. Для протекания реакции, катализируемой ДНК-полимеразой, необходимы матричная ДНК, обязательное присутствие всех четырех дезоксинуклеозидтрифосфатов и ионов Mg2+. Равновесие реакции сильно смещено в сторону синтеза, оптимальная величина рН 7,5; реакция ингибируется пирофосфатом: концентрация пирофосфата 2•10-3 М угнетает реакцию синтеза на 50%. Показано, что двуспиральная молекула ДНК неактивна в качестве матрицы, однако для инициации репликации на активной матрице одноцепочечной ДНК необходим участок комплементарной ей полинуклеотидной цепи со свободным 3'-ОН-кон-цом рибозы, служащий затравкой для роста вновь синтезирующейся цепи. Эта затравка состоит из рибонуклеотидных остатков, которые удаляются по завершении синтеза комплементарной цепи ДНК. К 3'-ОН-концу затравки ДНК-полимераза последовательно присоединяет дезокспрпбонуклеотидные остатки, соединяющиеся водородными связями с комплементарными основаниями матричной цепи. Рост синтезирующейся цепи происходит в направлении 3'-ОН — 3'-ОН-концам, антипараллельно матричной цепи. Репликация ДНК приводит к удвоению количества генетического материала клетки и, как правило, — к клеточному делению. Поэтому репликация происходит тем чаще, чем короче время генерации вируса или бактерии и чем чаще делятся клетки у высших организмов. Темп репликации высок у эмбрионов, в особенности во время дробления, и замедляется по мере развития и дифференцировки. Вообще темп репликации соответствует митотической активности ткани и поэтому низок в не делящихся клетках, например в клетках мозга пли мышц, и относительно высок в часто делящихся клетках костного мозга или опухолей. Репликация ДНК имеет место и при эндомптозах, приводящих к полиидоидизации ядер. Репликация происходит не во время собственно митоза, а в интеркинетической фазе во время синтетического S-периода клеточного цикла между периодами gi и Ga.

Информация о работе Мейоз и его генетическая сущность