Автор работы: Пользователь скрыл имя, 10 Июня 2015 в 10:00, контрольная работа
Мейоз (от греч. мейозис - уменьшение) - способ деления клеток, приводящий к уменьшению в них числа хромосом вдвое. Мейоз служит ключевым звеном гаметогенеза у животных и спорогенеза у растений, в результате которого из диплоидных клеток образуются гаплоидные клетки. Мейоз протекает сходно почти у всех организмов. Он состоит из двух последовательных клеточных делений - мейоза I (первое деление) и мейоза II (второе деление), разделенных непродолжительным периодом интеркинеза. При этом репликация ДНК предшествует лишь первому делению.
Ведущая роль белков в явлениях жизни связана с богатством и разнообразием их химических функций, с исключительной способностью к различным превращениям и взаимодействиям с другими простыми и сложными веществами, входящими в состав цитоплазмы.
Нуклеиновые кислоты входят в состав важнейшего органа клетки – ядра, а также цитоплазмы, рибосом, митохондрий и т.д. Нуклеиновые кислоты играют важную, первостепенную роль в наследственности, изменчивости организма, в синтезе белка.
Одной из задач современной биологии и ее новейших разделов – молекулярной биологии, биоорганической химии, физико-химической биологии – является расшифровка механизмов синтеза молекулы белка, содержащей сотни, а иногда и тысячи остатков аминокислот. Механизм синтеза должен обладать точной кодирующей системой, которая автоматически программирует включение каждого аминокислотного остатка в определенное место полипептидной цепи. Кодирующая система определяет первичную структуру, а вторичная и третичная структуры белковой молекулы определяются физико-химическими свойствами и химическим строением аминокислот.
Первоначальные представления, согласно которым синтез белка могут катализировать те же протеолитические ферменты, что и вызывающие его гидролиз, но путем обратимости химической реакции, не подтвердились. Оказалось, что синтетические и катаболические реакции протекают не только различными путями, но и в разных субклеточных фракциях. Не подтвердилась так же гипотеза о предварительном синтезе коротких пептидов с их последующим объединением в единую полипептидную цепь. Более правильным оказалось предположение, что для синтеза белка требуются источники энергии, наличие активированных свободных аминокислот и несколько видов нуклеиновых кислот.
В современные представления о механизме синтеза белка большой вклад внесли советские биохимики. Так, в лаборатории А.Е. Браунштейна было впервые указано на участие АТФ в синтезе квазипептидных связей. В.Н. Ореховичем еще 50-е годы было показано, что перенос аминоцильных или пептидильных группировок на NH2 группу аминокислот может осуществляться не только с амидной или пептидной, но и со сложноэфирной связи. Именно этот механизм лежит в основе реакции транспептидирования в 50S рибосоме в стадии элонгации синтеза белка.
Значительно позже были получены доказательства, что в синтезе белка, протекающем в основном в цитоплазме, решающую роль играют нуклеиновые кислоты, в частности ДНК. После того как было установлено, что ДНК является носителем и хранителем наследственной информации, был поставлен вопрос о том, каким образом эта генетическая информация, записанная (зашифрованная) в химической структуре ДНК, трансформируется в фенотипические признаки и функциональные свойства живых организмов, передающиеся по наследству. В настоящее время можно дать однозначный ответ на этот вопрос: генетическая информация программирует синтез специфических белков, определяющих в свою очередь специфичность структуры и функции клеток, органов и целостного организма. В природе, как известно, существуют два типа биополимерных макромолекул, так называемые неинформативные биополимеры и информативные биополимеры, несущие первичную генетическую информацию и вторичную генетическую, точнее фенотипическую информацию.
Биосинтез белка, хотя непосредственно и регулируется рибонуклеиновыми кислотами, опосредованно связан с контролирующим влиянием ДНК ядра и что РНК сначала синтезируется в ядре, затем поступает в цитоплазму, где выполняет роль матрицы в синтезе белка. Полученные значительно позже экспериментальные данные подтвердили гипотезу о том, что основной функцией нуклеиновых кислот является не только хранение генетической информации, но и реализация этой информации путем программированного синтеза специфических белков.
Однако в этой последовательности ДНК – РНК – Белок недоставало сведений о том, каким образом происходят расшифровка наследственной информации и синтеза специфических белков, определяющие многообразие признаков живых существ. В настоящее время выяснены основные процессы, посредством которых осуществляется передача наследственной информации: они включают репликацию, т.е. синтез ДНК на матрице ДНК, транскрипцию, т.е. перевод языка и типа строения ДНК на молекулу РНК, и трансляцию – процесс, в котором генетическая информация, содержащаяся в молекуле мРНК, направляет синтез соответствующей аминокислотной последовательности в белке. Многие тонкие механизмы транскрипции окончательно не выяснены.
Получены экспериментальные доказательства наличия ДНК также в митохондриях. Она не гомологичная и не комплементарна ядерной ДНК. Предполагается, что митохондриальная ДНК кодирует синтез части структурных белков самих митохондрий.
Аминокислотный код позволяет шифровать аминокислоты, входящие в состав белков, с помощью определенной последовательности нуклеотидов в ДНК и мРНК. Для него характерны определенные свойства: триплетность, специфичность, вырожденность, линейность записи информации, универсальность, колинеарность гена и продукта.
Для синтеза полипептидной цепи необходимо большое количество компонентов, совместное и согласованное взаимодействие приводит к образованию белка.
Синтез белка представляет собой циклический многоступенчатый энергозависимый процесс, в котором свободные аминокислоты полимеризуется в генетически детерминированную последовательность с образованием полипептидов. Система белкового синтеза, точнее система трансляции, которая использует генетическую информацию, транскрибированную в мРНК, для синтеза полипептидной цепи с определенной первичной структурой, включает около 200 типов макромолекул – белков и нуклеиновых кислот. Среди них около 100 макромолекул, участвующих в активировании аминокислот и их переносе на рибосомы, более 60 макромолекул, входящих в состав 70S или 80S рибосом, и около 10S макромолекул, принимающих непосредственное участие в системе трансляции. При помощи изотопного метода было выяснено, что синтез белка начинается с N-конца и завершается C-концом, т.е. процесс протекает в направлении: NH2COOH.
Белковый синтез, или процесс трансляции, может быть условно разделен на 2 этапа: активирование аминокислот и собственно процесс трансляции.
Второй этап матричного синтеза белка, собственно трансляцию, протекающей в рибосоме, условно делят на три стадии: инициации, элонгации и терминации.
В процессе синтеза белка рибосома присоединяется к 5'-концу мРНК и перемещается в направлении З'-конца. При этом 5'-конец мРНК освобождается, и к нему может присоединиться новая рибосома, на которой начинается рост ещё одной полипептидной цепи. Как правило, много рибосом одновременно участвует в синтезе белка на одной и той же мРНК, образуя комплекс, который называют полирибосомой, или полисомой.
Полипептидные цепи могут подвергаться структурным модификациям, либо будучи ещё связанными с рибосомами, либо после завершения синтеза. Эти конформационные и структурные изменения полипептидных цепей получили название посттрансляционных изменений. Они включают удаление части полипептидной цепи, ковалентное присоединение одного или нескольких низкомолекулярных лигандов, приобретение белком нативной конформации.
Основным условием существования любых живых организмов является наличие тонкой, гибкой, согласованно действующей системы регулирования, в которой все элементы тесно связаны друг с другом. В белковом синтезе не только количественный и качественный состав белков, но и время синтеза имеет прямое отношение ко многим проявлениям жизни. В частности, от этого зависит приспособление микроорганизмов к условиям окружающей питательной среды как биологической необходимости или приспособление сложного многоклеточного организма к физиологическим потребностям при изменении внутренних и внешних условий.
Изложенная теория биосинтеза белка получила название матричной теории. Матричной эта теория называется потому, что нуклеиновые кислоты играют как бы роль матриц, в которых записана вся информация относительно последовательности аминокислотных остатков в молекуле белка.
Создание матричной теории биосинтеза белка и расшифровка аминокислотного кода является крупнейшим научным достижением XX века, важнейшим шагом на пути к выяснению молекулярного механизма наследственности.
22. Теория Жакобо и Моно о регуляции белкового синтеза по принципу репрессии и индукции.
Механизм регуляции генетического кода был открыт французскими учеными Ф. Жакобом и Ж. Моно в 1961 г. на бактериях. E. coli и получил название механизма индукции-репрессии. Было установлено, что синтез соответствующих белков – ферментов – индуцируется веществом, служащим субстратом и необходимым для нормальной жизнедеятельности клетки. Так, например, для нормальной жизнедеятельности E. coli необходим молочный сахар (лактоза), и в ее геноме содержаться гены, контролирующие синтез ферментов, гидролизующих лактозу до простых соединений. Если среда, в которой находятся бактерии, лактозы не содержит, эти гены пребывают в репрессированном состоянии и не функционируют. Внесенная в среду лактоза будет тем индуктором, который включает в работу длинные гены, и в клетке начинается синтез ферментов, гидролизующих лактозу до более простых соединений. После удаления лактозы из среды синтез этих ферментов прекращается. Роль репрессора может выполнять и вещество, синтезируемое в клетке, если содержание его превышает норму. Например, если синтезируются нуклеотиды аминокислоты и другие вещества и содержание их превышает количество, необходимое данной клетке, каждое из них может быть репрессором и подавлять работу генов, синтезирующих ферменты, необходимые для данного биохимического процесса.
Механизм индукции-репрессии обеспечивает включение в работу тех генов, которые синтезируют необходимые на данном этапе жизнедеятельности клетки ферменты. Работа генов прекращается, когда деградируемый данными ферментами субстрат израсходован или когда синтезируемое данными ферментами вещество находится в избытке. У высших организмов процесс регуляции работы генов осуществляется более сложно: у животных важную роль в этом процессе играют гормоны, клеточные мембраны; у растений - условия внешней среды, в том числе и окружающие клетки.
Раскрытие механизма регуляции генетического кода показало сложное строение локализованного в молекуле ДНК генетического аппарата. Гены, непосредственно кодирующие синтез соответствующих ферментов, называют структурными генами. Они входят в состав оперона, работу которого регулирует ген-регулятор. Как правило, структурные гены в опероне находятся в состоянии репрессии. Ген-регулятор расположен на особом участке молекулы ДНК и кодирует синтез специального белка, называемого репрессором. Работой структурных генов управляют находящиеся в опероне гены, не имеющие кодирующих функций. Их называют акцепторными генами. Система акцепторных и структурных генов образует единицу генетической регуляции, или оперон.
Акцепторные гены служат местом прикрепления различных белков, регулирующих работу структурных генов. Если лактоза, проникая в клетку, блокирует белки, кодируемые геном-регулятором, то они теряют способность присоединяться к гену-оператору. Ген-оператор переходит в активное состояние и включает в работу структурные гены. РНК-полимераза с помощью Сар-белка присоединяется к промотору и, продвигаясь вдоль оперона, синтезирует про-м РНК. При транскрипции мРНК считывает генетическую информацию со всех трех структурных генов в одном опероне. При трансляции на рибосоме происходит синтез трех разных полипептидных цепей в соответствии с содержащимися в мРНК кодами – последовательностями нуклеотидов, обеспечивающих инициацию и терминацию трансляции каждой цепи.
Тип регуляции работы генов, рассмотренной на примере лактозного оперона, называетсянегативной индукцией синтеза белка. Другим типом регуляции работы генов служит негативная репрессия, изученная у E.coli на примере trp–оперона, контролирующего синтез аминокислоты триптофана. Этот оперон состоит из 6700 пар нуклеотидов и содержит пять структурных генов, ген-оператор и два промотора. Ген-регулятор обеспечивает постоянный синтез регулярного белка, который не влияет на работу trp-оперона. При избытке в клетке триптофана последний соединяется с регуляторным белком и изменяет его таким образом, что он связывается с опероном и репрессирует синтез соответствующей мРНК.
Известна также и так называемая позитивная индукция, когда белковый продукт гена-регулятора активирует работу оперона, то есть выступает в роли не репрессора, а активатора. Деление это условно, и строение акцепторной части оперона, действие гена-регулятора у прокариотов весьма разнообразны.
Число структурных генов в опероне у прокариотов колеблется от одного до двенадцати; оперон может иметь либо один, либо два промотора и терминатора. Все структурные гены, локализованные в одном опероне, как правило, контролируют систему ферментов, обеспечивающих одну цепь биохимических реакций. Несомненно, что в клетке существуют системы, согласующие регуляцию работы нескольких оперонов.
В связи с особенностями организации отдельных генов эукариот и генома в целом регуляция генной активности у них характеризуется некоторыми отличиями по сравнению с прокариотами.
У эукариот не обнаружено организации генов по типу оперона. Установлено, что функционирование генов, несомненно, подчиняется регуляторным воздействием, однако регуляция транскрипции у эукариот является комбинационной, то есть активность каждого гена регулируется большим спектром генов-регуляторов.
У эукариотических генов имеется несколько областей, которые узнаются разными белками-регуляторами. Одна из них расположена недалеко от промотора и включает около ста пар нуклеотидов, в том числе ТАТА-блок. Установлено, что для успешного присоединения РНК-полимеразы к промотору необходимо предварительное соединение с ТАТА-блоком особого белка – фактора транскрипции – с образованием стабильного транскрипционного комплекса. Именно этот комплекс ДНК с белком узнает РНК-полимеразой. Последовательности нуклеотидов, примыкающих к ТАТА-блоку, формируют требуемый для транскрипции элемент, расположенный перед промотором.
Другая область, играющая важную роль в регуляции генной активности эукариотических генов, располагается на большом расстоянии от промотора и называется энхансером.
И энхансер, и препромоторный элемент эукариотических генов содержат серию коротких нуклеотидных последовательностей, которые связываются с соответствующими регуляторными белками. В результате взаимодействия этих белков происходит включение или выключение генов.
Особенностью регуляции экспрессии эукариотических генов является также существование белко-регуляторов, которые способны контролировать транскрипцию многих генов, кодирующих, возможно, другие белки-регуляторы. В связи с этим белки-регуляторы обладают координирующим влиянием на активность многих генов, и их действие характеризуется плейотропным эффектом. Примером может служить существование белка, который активирует транскрипцию нескольких специфических генов, определяющих дифференцировку предшественников жировых клеток.