Охрана труда, документация по расследованию и учету несчастных случаев, профзаболеваний, виды излучений, их воздействие на организм челов

Автор работы: Пользователь скрыл имя, 11 Сентября 2015 в 15:42, контрольная работа

Описание работы

Охрана труда
система обеспечения безопасности жизни и здоровья работников в процессе трудовой деятельности, включающая правовые, социально-экономические, санитарно-гигиенические, психофизические, лечебно-профилактические, реабилитационные и иные мероприятия. Функциями охраны труда являются исследования санитарии и гигиены труда, проведение мероприятий по снижению влияния вредных факторов на организм работников в процессе труда.

Файлы: 1 файл

кр по бжд.docx

— 40.56 Кб (Скачать файл)

 

Бета-частица (β-частица), заряженная частица, испускаемая в результате бета-распада. Поток бета-частиц называется бета-лучи или бета-излучение.

Отрицательно заряженные бета-частицы являются электронами (β—), положительно заряженные — позитронами (β+).

Энергии бета-частиц распределены непрерывно от нуля до некоторой максимальной энергии, зависящей от распадающегося изотопа; эта максимальная энергия лежит в диапазоне от 2,5 кэВ (для рения-187) до десятков МэВ (для короткоживущих ядер, далёких от линии бета-стабильности).

Бета-лучи под действием электрического и магнитного полей отклоняются от прямолинейного направления. Скорость частиц в бета-лучах близка к скорости света. Бета-лучи способны ионизировать газы, вызывать химические реакции, люминесценцию, действовать на фотопластинки.

Значительные дозы внешнего бета-излучения могут вызвать лучевые ожоги кожи и привести к лучевой болезни. Ещё более опасно внутреннее облучение от бета-активных радионуклидов, попавших внутрь организма. Бета-излучение имеет значительно меньшую проникающую способность, чем гамма-излучение (однако на порядок большую, чем альфа-излучение). Слой любого вещества с поверхностной плотностью порядка 1 г/см2 (например, несколько миллиметров алюминия или несколько метров воздуха) практически полностью поглощает бета-частицы с энергией около 1 МэВ.

 

Гамма -излучение вид электромагнитного излучения с чрезвычайно маленькой длиной волны — < 5×10−3 нм и вследствие этого ярко выраженными корпускулярными и слабо выраженными волновыми свойствами. Гамма-квантами являются фотоны высокой энергии. Обычно считается, что энергии квантов гамма-излучения превышают 105 эВ, хотя резкая граница между гамма- и рентгеновским излучением не определена. На шкале электромагнитных волн гамма-излучение граничит с рентгеновским излучением, занимая диапазон более высоких частот и энергий. В области 1-100 кэВ гамма-излучение и рентгеновское излучение различаются только по источнику: если квант излучается в ядерном переходе, то его принято относить к гамма-излучению, если при взаимодействиях электронов или при переходах в атомной электронной оболочке — то к рентгеновскому излучению. Очевидно, физически кванты электромагнитного излучения с одинаковой энергией не отличаются, поэтому такое разделение условно.

Гамма-излучение испускается при переходах между возбуждёнными состояниями атомных ядер (энергии таких гамма-квантов лежат в диапазоне от ~1 кэВ до десятков МэВ), при ядерных реакциях (например, при аннигиляции электрона и позитрона, распаде нейтрального пиона и т.д.), а также при отклонении энергичных заряженных частиц в магнитных и электрических полях (см. Синхротронное излучение).

 

Гамма-лучи в отличие от α-лучей и β-лучей не отклоняются электрическими и магнитными полями и характеризуются большей проникающей способностью при равных энергиях и прочих равных условиях. Гамма-кванты вызывают ионизацию атомов вещества. Основные процессы, возникающие при прохождении гамма-излучения через вещество:

Фотоэффект (гамма-квант поглощается электроном атомной оболочки, передавая ему всю энергию и ионизируя атом).

Комптоновское рассеяние (гамма-квант рассеивается на электроне, передавая ему часть своей энергии).

Рождение электрон-позитронных пар (в поле ядра гамма-квант с энергией не ниже 2mec2=1,022 МэВ превращается в электрон и позитрон).

Фотоядерные процессы (при энергиях выше нескольких десятков МэВ гамма-квант способен выбивать нуклоны из ядра).

Гамма-кванты, как и любые другие фотоны, могут быть поляризованы.

Облучение гамма-квантами, в зависимости от дозы и продолжительности, может вызвать хроническую и острую лучевую болезнь. Стохастические эффекты облучения включают различные виды онкологических заболеваний. В то же время гамма-облучение подавляет рост раковых и других быстро делящихся клеток. Гамма-излучение является мутагенным и тератогенным фактором.

Защитой от гамма-излучения может служить слой вещества. Эффективность защиты (то есть вероятность поглощения гамма-кванта при прохождении через неё) увеличивается при увеличении толщины слоя, плотности вещества и содержания в нём тяжёлых ядер (свинца, вольфрама, обеднённого урана и пр.).

Биологическое действие ионизирующих излучений

Различают два вида эффекта воздействия на организм ионизирующих излучений: соматический и генетический. При соматическом эффекте последствия проявляются непосредственно у облучаемого, при генетическом - у его потомства. Соматические эффекты могут быть ранними или отдалёнными. Ранние возникают в период от нескольких минут до 30-60 суток после облучения. К ним относят покраснение и шелушение кожи, помутнение хрусталика глаза, поражение кроветворной системы, лучевая болезнь, летальный исход. Отдалённые соматические эффекты проявляются через несколько месяцев или лет после облучения в виде стойких изменений кожи, злокачественных новообразований, снижения иммунитета, сокращения продолжительности жизни.

При изучении действия излучения на организм были выявлены следующие особенности:

ü      Высокая эффективность поглощённой энергии, даже малые её количества могут вызвать глубокие биологические изменения в организме.

ü      Наличие скрытого (инкубационного) периода проявления действия ионизирующих излучений.

ü      Действие от малых доз может суммироваться или накапливаться.

ü      Генетический эффект - воздействие на потомство.

Различные органы живого организма имеют свою чувствительность к облучению.

Не каждый организм (человек) в целом одинаково реагирует на облучение.

Облучение зависит от частоты воздействия. При одной и той же дозе облучения вредные последствия будут тем меньше, чем более дробно оно получено во времени.

Ионизирующее излучение может оказывать влияние на организм как при внешнем (особенно рентгеновское и гамма-излучение), так и при внутреннем (особенно альфа-частицы) облучении. Внутреннее облучение происходит при попадании внутрь организма через лёгкие, кожу и органы пищеварения источников ионизирующего излучения. Внутреннее облучение более опасно, чем внешнее, так как попавшие внутрь источники ионизирующего излучения подвергают непрерывному облучению ничем не защищённые внутренние органы.

Под действием ионизирующего излучения вода, являющаяся составной частью организма человека, расщепляется и образуются ионы с разными зарядами. Полученные свободные радикалы и окислители взаимодействуют с молекулами органического вещества ткани, окисляя и разрушая её. Нарушается обмен веществ. Происходят изменения в составе крови - снижается уровень эритроцитов, лейкоцитов, тромбоцитов и нейтрофилов. Поражение органов кроветворения разрушает иммунную систему человека и приводит к инфекционным осложнениям.

Местные поражения характеризуются лучевыми ожогами кожи и слизистых оболочек. При сильных ожогах образуются отёки, пузыри, возможно отмирание тканей (некрозы).

Смертельные поглощённые дозы для отдельных частей тела следующие:

ü      голова - 20 Гр;

ü      нижняя часть живота - 50 Гр;

ü      грудная клетка -100 Гр;

ü      конечности - 200 Гр.

При облучении дозами, в 100-1000 раз превышающую смертельную дозу, человек может погибнуть во время облучения ("смерть под лучом").

В зависимости от типа ионизирующего излучения могут быть разные меры защиты: уменьшение времени облучения, увеличение расстояния до источников ионизирующего излучения, ограждение источников ионизирующего излучения, герметизация источников ионизирующего излучения, оборудование и устройство защитных средств, организация дозиметрического контроля, меры гигиены и санитарии.

В России, на основе рекомендаций Международной комиссии по радиационной защите, применяется метод защиты населения нормированием. Разработанные нормы радиационной безопасности учитывают три категории облучаемых лиц:

А - персонал, т.е. лица, постоянно или временно работающие с источниками ионизирующего излучения;

Б - ограниченная часть населения, т.е. лица, непосредственно не занятые на работе с источниками ионизирующих излучений, но по условиям проживания или размещения рабочих мест могущие подвергаться воздействию ионизирующих излучений;

В - всё население.

Для категорий А и Б, с учётом радиочувствительности разных тканей и органов человека, разработаны предельно допустимые дозы облучения .

Предельно допустимая доза - это наибольшее значение индивидуальной эквивалентной дозы за год, которая при равномерном воздействии в течение 50 лет не вызовет в состоянии здоровья персонала неблагоприятных изменений, обнаруживаемых современными методами.

Каждый житель Земли (категория В) на протяжении всей своей жизни ежегодно облучается дозой в среднем 250-400 мбэр. Полученная доза складывается из природных и искусственных источников ионизирующего излучения.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

источники техногенных ЧС и их характеристики

 

Вид техногенной чрезвычайной ситуации 

Транспортные аварии (катастрофы) 

Аварии грузовых железнодорожных поездов, аварии пассажирских поездов, поездов метрополитена, аварии (катастрофы) на автомобильных дорогах (крупные автодорожные катастрофы), аварии транспорта на мостах, в туннелях и железнодорожных переездах, аварии на магистральных трубопроводах, аварии грузовых судов (на море и реках), аварии (катастрофы) пассажирских судов (на море и реках), аварии (катастрофы) подводных судов, авиационные катастрофы в аэропортах и населенных пунктах, авиационные катастрофы вне аэропортов и населенных пунктов, наземные аварии (катастрофы) ракетных космических комплексов, орбитальные аварии космических аппаратов

Пожары, взрывы, угроза взрывов 

Пожары (взрывы) в зданиях, на коммуникациях и технологическом оборудовании промышленных объектов, пожары (взрывы) на объектах добычи, переработки и хранения легковоспламеняющихся, горючих и взрывчатых веществ, пожары (взрывы) в шахтах, подземных и горных выработках, метрополитенах, пожары (взрывы) в зданиях, сооружениях жилого, социально-бытового и культурного назначения, пожары (взрывы) на химически опасных объектах, пожары (взрывы) на радиационно опасных объектах, обнаружение неразорвавшихся боеприпасов, утрата взрывчатых веществ (боеприпасов)

Аварии с выбросом (угрозой выброса) аварийно химически опасных веществ 

Аварии с выбросом (угрозой выброса) аварийно химически опасных веществ при их производстве, переработке или хранении (захоронении), аварии на транспорте с выбросом (угрозой выброса) аварийно химически опасных веществ, образование и распространение опасных химических веществ в процессе химических реакций, начавшихся в результате аварии, аварии с химическими боеприпасами, утрата источников химически опасных веществ

Аварии с выбросом (угрозой выброса) радиоактивных веществ 

Аварии на АЭС, атомных энергетических установках производственного и исследовательского назначения с выбросом (угрозой выброса) радиоактивных веществ, аварии с выбросом (угрозой выброса) радиоактивных веществ на предприятиях ядерно-топливного цикла

Аварии с выбросом (угрозой выброса) радиоактивных веществ 

Аварии транспортных средств и космических аппаратов с ядерными установками или грузом радиоактивных веществ на борту, аварии при промышленных и испытательных ядерных взрывах с выбросом (угрозой выброса) радиоактивных веществ, аварии с ядерными боеприпасами в местах их хранения или установки, утрата радиоактивных источников

Аварии с выбросом (угрозой выброса) биологически опасных веществ 

Аварии с выбросом (угрозой выброса) биологически опасных веществ на предприятиях промышленности и в научно-исследовательских учреждениях (лабораториях), аварии на транспорте с выбросом (угрозой выброса) биологических веществ, утрата биологически опасных веществ

Гидродинамические аварии 

Прорывы плотин (дамб, шлюзов, перемычек) с образованием волн прорыва и катастрофических затоплений, прорывы плотин (дамб, шлюзов, перемычек) с образованием прорывного паводка, прорывы плотин (дамб, шлюзов, перемычек), повлекшие смыв плодородных почв или отложение наносов на обширных территориях

Внезапное обрушение зданий, сооружений 

Обрушение производственных зданий и сооружений, обрушение зданий и сооружений жилого, социально-бытового и культурного назначения, обрушение элементов транспортных коммуникаций

Аварии на электроэнергетических системах 

Аварии на автономных электростанциях с долговременным перерывом электроснабжения всех потребителей, аварии на электроэнергетических системах (сетях) с долговременным перерывом электроснабжения основных потребителей или обширных территорий, выход из строя транспортных электроконтактных сетей

Аварии на коммунальных системах жизнеобеспечения 

Аварии в канализационных системах с массовым выбросом загрязняющих веществ, аварии на тепловых сетях (система горячего водоснабжения) в холодное время, аварии в системах снабжения населения питьевой водой, аварии на коммунальных газопроводах

Аварии на промышленных очистных сооружениях 

Аварии на очистных сооружениях сточных вод промышленных предприятий с массовым выбросом загрязняющих веществ, аварии на очистных сооружениях промышленных газов с массовым выбросом загрязняющих веществ

Техногенные чрезвычайные ситуации связаны с производственной деятельностью человека и могут протекать с загрязнением и без загрязнения окружающей среды. Наибольшую опасность в техногенной сфере представляют транспортные аварии, взрывы и пожары, радиационные аварии, аварии с выбросом аварийно химически опасных веществ и др.

Нарастание риска возникновения техногенных чрезвычайных ситуаций в России обусловлено тем, что в последние годы в наиболее ответственных отраслях потенциально опасные объекты имеют выработку проектного ресурса на уровне 50–70%, иногда достигая предаварийного уровня. В техногенной безопасности есть и другие общие черты неблагополучия: снижение уровня профессиональной подготовки персонала предприятий промышленности, производственной и технологической дисциплины; распространены технологическая отсталость производства и низкие темпы внедрения безопасных технологий. Показатели риска возникновения чрезвычайных ситуаций на потенциально опасных объектах в России превышают показатели приемлемых рисков, достигнутых в мировой практике.

Информация о работе Охрана труда, документация по расследованию и учету несчастных случаев, профзаболеваний, виды излучений, их воздействие на организм челов