Аппарат анализа опасностей; основные этапы анализа опасностей

Автор работы: Пользователь скрыл имя, 22 Марта 2011 в 22:17, контрольная работа

Описание работы

Анализ опасностей делает предсказуемыми перечисленные выше чепе и, следовательно, их можно предотвратить соответствующими мерами. К главным моментам анализа опасностей относится поиск ответов на следующие вопросы. Какие объекты являются опасными? Какие чепе можно предотвратить? Какие чепе нельзя устранить полностью и как часто они будут иметь место? Какие повреждения неустранимые чепе могут нанести людям, материальным объектам, окружающей среде?

Содержание работы

1.Аппарат анализа опасностей; основные этапы анализа опасностей……....3
2.Зоны с высокой совокупностью опасностей в техносфере (производственная среда, зоны ЧС и т.д.)………………………………………...6
3.Теплообмен организма человека с окружающей средой, механизмы его осуществления………………………………………………………………….……..12
4.Оценка негативных фаторов. Классификация производственных вредных веществ……………………………………………………………………...…………14
5.Естественное производственное освещение: источники; виды; преимущества и недостатки; нормирование параметров………………..………17
6.Требования к пищевым продуктам……………………..…………………..19
7.Обучение работников в области охраны труда: организация обучения и проверки знаний требований охраны труда, виды инструктажа по охране труда……………………………………………………………………………………22
8.Безопасность жизнедеятельности в специальных условиях……………...25
Библиографический список…………………………………………………….….31

Приложения…………………………………………………………………………32

Файлы: 1 файл

контрольная.doc

— 213.50 Кб (Скачать файл)

  Автомобильный транспорт. Рост российского автомобильного парка происходит в условиях существенного отставания экологических показателей отечественных автотранспортных средств и используемых моторных топлив от мирового уровня, а также отставания в развитии и техническом состоянии улично-дорожной сети. Средний возраст автомобильного парка остается значительным и составляет в целом по стране около 10,5 лет, а в отдельных регионах России — от 9,4 до 13,6 лет.

  С 1 июля 2000 г. Госстандартом России введены  в действие в качестве государственных стандартов Российской Федерации нормы Евро-2, касающиея требований к выбросам загрязняющих веществ и дымности отработавших газов автомобилей, в том числе использующих газообразное моторное топливо, а также требований к сменным каталитическим нейтрализаторам. Нормы Евро-2 для автомобилей с дизелями действуют с 1 июля 2000 г., а для легковых автомобилей введение норм Евро-2 - с 1 июля 2002 г. Введение норм обеспечивает уменьшение выбросов загрязняющих веществ от одного автомобиля: в 2,0—2,8 раза для дизельного двигателя грузового автомобиля или автобуса; примерно в 10 раз для двигателя легкового автомобиля при применении нейтрализатора отработавших газов и неэтилированного бензина.

  Мероприятия по защите атмосферного воздуха от выбросов ДВС рассмотрены в гл. 10.

  Речной и морской водный транспорт России в 2000 г. имел на учете соответственно 32 644 и 1319 судов. Мероприятия по предотвращению загрязнения окружающей среды в результате судоходства направлены прежде всего на предотвращение загрязнения моря и внутренних водоемов нефтью и другими вредными веществами, которые перевозятся в качестве грузов, а также сточными водами, мусором и веществами, загрязняющими атмосферу.

  Железнодорожный транспорт. Основные защитные мероприятия направлены на уменьшение негативного влияния передвижных источников железнодорожного транспорта (тепловозов) на атмосферный воздух, для чего внедряются нейтрализаторы — глушители, а в качестве топлива используются сжатые газы.

  Мероприятия по охране гидросферы направлены на сокращение потребления питьевой воды на производственные нужды, повышение эффективности очистных сооружений. Широкое применение для очистки сточных вод получили флотационные установки.

  Первостепенное  значение придается сохранению и  восстановлению защитных лесных насаждений. Ведутся работы по сокращению массы различных отходов, в том числе и высокотоксичных.

  В 2000 г. завершена «Экологическая программа  железнодорожного транспорта на 1996—2000 годы». В результате выполнения Программы выбросы загрязняющих веществ в атмосферный воздух снизились на 24,4 %; сброс загрязненных сточных вод в поверхностные водные объекты сократился на 38,3 %; использовано и обезврежено 22,1 % общего количества образовавшихся отходов.

  Авиация. Самолеты и вертолеты создают серьезные проблемы, связанные с воздействием шума на пассажиров, обслуживающий персонал и, особенно, на население, проживающее около аэропортов. Сверхнормативному воздействию шума подвергается около 2,5 млн человек, проживающих около аэропортов, так как парк авиационных судов (Ил-76, Ил-86, Ту-134) не соответствует стандартам Международной организации гражданской авиации.

  При оценке неблагоприятного воздействия  авиации на атмосферу принято  разделять выбросы вредных веществ  в приземном слое атмосферы (до высоты 900 м), которые влияют на качество воздуха в районах аэропортов, и выбросы по трассам полета (на высотах более 900 м).

  Выхлопные газы газотурбинных двигательных установок (ГТДУ) содержат такие токсичные  компоненты, как оксид углерода, оксиды азота, углеводороды, сажу, альдегиды и др. Содержание токсичных составляющих в продуктах сгорания существенно зависит от режима работы двигателя. Высокие концентрации оксида углерода и углеводородов характерны для ГТДУ на пониженных режимах (при холостом ходе, рулении, приближении к аэропорту, заходе на посадку), тогда как содержание оксидов азота существенно возрастает при работе на режимах, близких к номинальному (взлете, наборе высоты, полетном режиме).

  Суммарный выброс токсичных веществ в атмосферу самолетами с ГТДУ непрерывно растет, что обусловлено повышением расхода топлива до 20...30 т/ч и неуклонным ростом числа эксплуатируемых самолетов. Отмечается влияние ГТДУ на озоновый слой и накопление углекислого газа в атмосфере.

  Наибольшее  влияние на условия обитания выбросы ГТДУ оказывают в аэропортах и зонах, примыкающих к испытательным станциям.

  Необходимо  отметить, что в аэропортах существенный вклад (до 50 % по СО) в общее загрязнение  атмосферного воздуха вносит автомобильный транспорт, обслуживающий авиаперевозки.

  Ракетно-космическая техника. Ее воздействие на население и природную среду происходит за счет загрязнения атмосферы и почвы механическими и химическими отходами, разрушения озонового слоя, акустического, теплового и электромагнитного воздействия. Основное негативное воздействие ракет связано с загрязнением атмосферы химическими веществами и земной поверхности механическими фрагментами в зоне пуска ракет-носителей и в районе падения их отделяющихся частей.

  В 2000 г. осуществлено 36 пусков ракет-носителей. Доля загрязнений, поступающих в окружающую среду при их пусках, невелика и составляет около 0,01 % по отношению к другим загрязнениям в регионах космодромов (Плесецк, Байконур).

  Загрязнения компонентами топлива от отделяющихся частей ракет-носителей в местах их падения носят локальный характер и сосредоточены обычно в зоне радиусом 50 м от места падения. По данным Минобороны России, общая площадь полей падения составляет 15627,6 тыс. га, а загрязнено компонентами ракетного топлива и остатками отделяющихся частей ракет-носителей 191,8 тыс. га. Для устранения таких загрязнений разрабатываются технологии нейтрализации и детоксикации проливов компонентов топлива, а также ведутся работы по сокращению гарантированных запасов компонентов топлива на борту ракет.

  Загрязнение воздушной среды транспортом  с ракетными двигательными установками (РДУ) происходит главным образом при их работе перед стартом, при взлете, при наземных испытаниях в процессе их производства или после ремонта, при хранении и транспортировании топлива. Состав продуктов сгорания при работе таких двигателей определяется составом компонентов топлива, температурой сгорания, процессами диссоциации и рекомбинации молекул. Количество продуктов сгорания зависит от мощности (тяги) двигательных установок. При сгорании твердого топлива из камеры сгорания выбрасываются пары воды, диоксид углерода, хлор, пары соляной кислоты, оксид углерода, оксид азота, а также твердые частицы А1203 со средним размером 0,1 мкм (иногда до 10 мкм).

  В условиях запуска у пусковой системы  образуется облако продуктов сгорания, водяного пара от системы шумоглушения, песка и пыли. Объем продуктов сгорания можно определить по времени (обычно 20с) работы установки на стартовой площадке и в приземном слое. После запуска высокотемпературное облако поднимается на высоту до 3 км и перемещается под действием ветра на расстояние 30...60 км, оно может рассеяться, но может стать причиной кислотных дождей.

  При старте ракетные двигатели неблагоприятно воздействуют не только на приземный слой атмосферы, но и на космическое пространство, разрушая озоновый слой Земли. Масштабы разрушения озонового слоя определяются числом запусков ракетных систем и интенсивностью полетов сверхзвуковых самолетов. По прогнозам фирмы «Аэроспейс», в XXI в. для транспортирования грузов на орбиту будет осуществляться до 10 запусков ракет в сутки, при этом выброс продуктов сгорания каждой ракеты будет превышать 1,5 т/с.

  В связи с развитием авиации  и ракетной техники, а также интенсивным использованием авиационных и ракетных двигателей в других отраслях народного хозяйства существенно возрос общий выброс вредных примесей в атмосферу. Однако на долю этих двигателей приходится пока не более 1,5 % токсичных веществ, поступающих в атмосферу от транспортных средств всех типов.

  Доля  загрязнения атмосферы от газотурбинных  двигательных установок и ракетных двигателей пока незначительна, поскольку их применение в городах и крупных промышленных центрах ограничено. В местах активного использования ГТДУ и РДУ (аэродромы, испытательные станции, стартовые площадки) загрязнения, поступающие в атмосферу от этих источников, сопоставимы с загрязнениями от ДВС и ТЭС, обслуживающих эти объекты.

  Зоны воздействия линий электропередачи, электротранспорта и связи. Электромагнитное загрязнение окружающей среды непрерывно нарастает. Этому способствуют передающие центры ВГТРК, технические средства, используемые в отрасли «связь», высоковольтные линии (BJI), расположенные вблизи жилых зданий, электротранспорт. В некоторых случаях границы санитарно-защитных зон находятся за пределами территории радиотехнических объектов на расстоянии до 50 м, а границы зон ограничения застройки — на расстоянии до 2000 м. Если передатчики радиостанций (3...30 МГц) размещаются в городской черте, то напряженность электрического поля вблизи антенн в районах жилой застройки может достигать 30...40 В/м.

  Существует  устойчивая тенденция наращивания  количества излучающих технических средств, увеличения их энергетических потенциалов. В городских районах размещается большое количество антенн различных частотных диапазонов и целевого назначения. Одновременная работа множества разнотипных излучателей, электромагнитные поля которых могут отличаться интенсивностью, поляризацией, частотами, зависимостью от параметров подстилающей поверхности, создает трудности анализа электромагнитной ситуации в конкретном районе.

  Зоны расположения Вооруженных Сил. Вклад объектов военной деятельности: космодромов и полигонов, пунктов базирования сил флота, аэродромов, парков автобронетанковой техники, производственных и ремонтных предприятий, арсеналов, баз и складов боеприпасов, ракетного топлива и горюче-смазочных материалов, объектов тепло- и энергоснабжения, баз уничтожения вооружения и военной техники — в загрязнение окружающей среды в целом по России составил 0,6 % сбросов неочищенных и недостаточно очищенных сточных вод в поверхностные водные объекты и 1,86 % выбросов загрязняющих веществ в атмосферу.

  Проблемы  Вооруженных Сил (ВС) в области охраны и рационального использования водных ресурсов связаны с неудовлетворительным состоянием очистных сооружений и систем оборотного водоснабжения.

  Выбросы загрязняющих веществ в атмосферу  составили 476,1 тыс. т. Основными источниками  загрязнения атмосферного воздуха являются котельные установки (70...75 % всех выбросов), большинство которых не оснащены пылегазоочистным оборудованием.

  В 2000 г. продолжался вывод атомных  подводных лодок различных типов из боевого состава ВМФ. На большинстве АПЛ (70 %), выведенных из состава ВМФ, не выгружено отработавшее ядерное топливо. В пунктах базирования сил флота накоплено более 16,5 тыс. м3 жидких радиоактивных отходов и более 24,5 тыс. м3 твердых радиоактивных отходов.

  В местах расположения баз хранения вооружения и военной техники, складов горюче-смазочных материалов, авиабаз и аэродромов серьезной проблемой остается предупреждение и ликвидация загрязнения окружающей среды нефтепродуктами. Из 39,21 тыс. га земель, загрязненных нефтепродуктами, 27,672 тыс. га приходится на объекты ВВС. Наиболее технологически сложными являются вопросы ликвидации многолетнего загрязнения земель нефтепродуктами в авиационных гарнизонах.

  На  военно-морских базах наблюдается  превышение установленных нормативов концентрации нефтепродуктов в воде в основных пунктах стоянки кораблей и судов (минимальное превышение - в 2,8 раза - в п. Североморск; максимальное - в 14 раз - в п. Севастополь). На очистку акваторий от нефтяного загрязнения выделены суда-нефтесборщики.

  В большинстве военных объектов и воинских гарнизонов отсутствует производственная структура по утилизации и захоронению твердых промышленных и бытовых отходов. Около 14,5 тыс. т бытовых отходов вывозится на свалки. Площадь земель, загрязненных неорганизованными свалками, составляет 171 тыс. га.

  Обеспечение экологической безопасности ВС осуществляется по следующим основным направлениям: выявление и контроль источников загрязнения; предотвращение загрязнения и защита личного состава; ликвидация загрязнения окружающей среды. В этих целях проводятся следующие мероприятия: формирование необходимой нормативной правовой базы; разработка новых методов и технологий, проектирование и создание технических средств обеспечения экологической безопасности. В стадии проработки находятся вопросы организации экологической сертификации образцов вооружения и военной техники. 

Информация о работе Аппарат анализа опасностей; основные этапы анализа опасностей