Солнечная система

Автор работы: Пользователь скрыл имя, 25 Марта 2015 в 18:09, курсовая работа

Описание работы

Целью данной работы является анализ структуры и эволюции солнечной системы.
Данная цель обусловила необходимость решения следующих задач:
— рассмотреть планеты Солнечной системы;
— изучить строение планет;
— проанализировать происхождение планет.

Содержание работы

Введение
1. Общие сведения о солнечной системе и её планетах
1.1 Происхождение планет
1.2 Планеты и их спутники.
1.3 Строение планет.
2. Планеты солнечной системы.
2.1 Особенности планет земной группы.
2.2 Характеристика планет-гигантов.
Заключение.
Список использованной литературы.

Файлы: 1 файл

курсовая за первый курс.docx

— 99.07 Кб (Скачать файл)

Различие температур дня и ночи, полярных и тропических районов, зимы и лета приводит к возникновению ветров, имеющих подчас скорости 40-50 м\сек. Система воздушной циркуляции на Марсе изучается сейчас различными методами многими учёными.

11 и 17 августа 1877 г. Асаф Холл на Вашингтонской обсерватории открыл два маленьких спутника Марса – Фобос и Деймос. Как показали фотографии «Маринера-9» в 1971 году, Фобос имеет размеры 27 на 20 км, Деймос 15 на 11 км. Поверхность спутников темнее Марсианской. Периоды обращения спутников вокруг планеты составляют 7 час. 39 мин. у Фобоса и 30 час. 21 мин. у Деймоса, их расстояние от центра планеты 9400 и 23500км. Наблюдения «Маринера-9» показали, что оба спутника обращены к Марсу одной стороной (как Луна к Земле). Для установления такого вращения достаточно только несколько сотен тысяч лет для Фобоса ввиду его близости к Марсу. Непосредственные фотографии, фотоэлектрические и поляризационные наблюдения указывают на то, что наружный слой поверхности обоих спутников – мелко раздробленная пыль, слой которой имеет толщину около 1 мм. Её состав, по-видимому, базальтовый со значительной примесью карбонатов. Инфракрасные наблюдения свидетельствуют о крайне низкой теплопроводности наружного покрова, что подтверждает гипотезу о пылевом слое.

В соответствии с законами Кеплера Земля обращается вокруг Солнца с переменной скоростью по слегка вытянутому эллипсу. Ближе всего к солнцу она подходит в начале января, когда в Северном полушарии царит зима, дальше всего отходит в начале июля, когда у нас лето. Разница в удалении Земли от Солнца между январём и июлем составляет около 5 млн. км. Поэтому зима в северном полушарии чуть-чуть теплее, чем в Южном, а лето, наоборот, чуть-чуть прохладнее. Это явственнее всего даёт себя знать в Арктике и в Антарктиде.

Эллиптичность орбиты Земли оказывает на характер времён года лишь косвенное и очень незначительное влияние. Причина смены времён года кроется в наклоне земной оси. Ось вращения Земли расположена под углом в 66.5 к плоскости её движения вокруг Солнца.

Единственный спутник Земли — Луна. Самая удивительная особенность движения Луны состоит в том, что скорость её вращения вокруг оси совпадает со средней угловой скоростью обращения вокруг Земли. Поэтому Луна всегда обращена к Земле одним и тем же полушарием. Поскольку Луна - ближайшее небесное тело её расстояние от Земли известно с наибольшей точностью, до нескольких сантиметров по измерениям при помощи лазеров и лазерных дальномеров. Наименьшее расстояние между центрами Земли и Луны равно 356 410 км. Наибольшее расстояние Луны от Земли достигает 406 700 км, а среднее расстояние составляет 384 401 км[7].

Земля как одна из планет Солнечной системы на первый взгляд ничем не примечательна. Это не самая большая, но и не самая малая из планет. Она не ближе других к солнцу, но и не обитает на периферии планетной системы. И всё же Земля обладает одной уникальной особенностью – на ней есть жизнь. Однако при взгляде на Землю из космоса это не заметно. Хорошо видны облака, плавающие в атмосфере. Сквозь просветы в них различимы материки. Большая же часть Земли покрыта океанами.

Появление жизни, живого вещества – биосферы – на нашей планете явилось следствием её эволюции. В свою очередь биосфера оказала значительное влияние на весь дальнейший ход природных процессов. Так, не будь жизни на Земле, химический состав её атмосферы был бы совершенно иным.

Недра Земли состоят из трёх основных частей: коры, оболочки (мантии) и ядра[16].

Кора отделяется от оболочки отчётливой границей, на которой скачкообразно возрастают скорости сейсмических волн, что вызвано резким повышением плотности вещества. Эта граница носит название раздел Мохоровичича (иначе – поверхность Мохо или раздел М) по фамилии сербского сейсмолога, открывшего её в 1909 г.

Толщина коры непостоянна, она изменяется от нескольких километров в океанических областях до нескольких десятков километров в горных районах материков. В самых грубых моделях Земли кору представляют в виде однородного слоя толщиной порядка 35 километров. Ниже, до глубины примерно 2900 км, расположена мантия. Она, как и земная кора, имеет сложное строение.

Граница между ядром и мантией наиболее отчётливая. Она сильно отражает продольные (Р) и поперечные (S) сейсмические волны и преломляет Р-волны. Ниже этой границы скорость Р-волны резко падает, а плотность вещества возрастает: от 5600 кг/м3 до 10000 кг/м3. S-волны ядро вообще не пропускает. Это означает, что вещество там находится в жидком состоянии.

В 30–е гг. сейсмологи установили, что у Земли есть и внутреннее, твёрдое ядро. Современное значение глубины границы между внутренним и внешним ядрами примерно 5150 км.

Граница наружной зоны Земли – расположена на глубине порядка 70 км. Литосфера включает в себя как земную кору, так и часть верхней мантии. Этот жёсткий слой объединяется в единое целое его механическими свойствами. Литосфера расколота примерно на десять больших плит, на границах которых случается подавляющее число землетрясений.

Под литосферой на глубинах от 70 до 250 км существует слой повышенной текучести – так называемая астеносфера Земли. Жёсткие литосферные плиты плавают в «астеносферном океане».

В астеносфере температура мантийного вещества приближается к температуре его плавления. Чем глубже, тем выше давление и температура. В ядре Земли давление превышает 3600 кбар, а температура – 6000 °С.

Тепловая энергия земных недр выделяется с поверхности планеты в виде теплового потока, который измеряется количеством тепла, выделяемого с единицы площади за единицу времени. Измерить тепловой поток Земли с достаточной точностью удалось только во второй половине XX века.

Континентальную земную кору можно представить в виде 15 – километрового слоя гранита, лежащего на слое базальта такой же толщины. Концентрация радиоактивных изотопов, служащих источниками тепла, в гранитах и базальтах хорошо изучена. Это прежде всего радиоактивный калий, уран и торий. Подсчитано, что при их распаде выделяется примерно 130 Дж/(см год). В тоже время средний тепловой поток, который равен 130 – 170 Дж/(см год). Следовательно, он почти полностью определяется тепловыделением в гранитном и базальтовом слоях.

С океанической корой всё обстоит иначе. Она значительно тоньше континентальной, и основу её составляет 5 – 6 –километровый базальтовый слой. Распад содержащихся в нём радиоактивных элементов даёт всего около 10 Дж/(см год). Однако, когда специалисты измерили тепловой поток на океанах, он оказался примерно таким же, как и на материках.

Сегодня установлено, что основная часть тепла поступает в океаническую кору через литосферную плиту из мантии. Вещество мантии постоянно находится в движении. Неравенство температур различных слоёв в ней приводит к активному перемешиванию вещества: более холодное и, соответственно, более плотное тонет, более горячее всплывает. Это так называемая тепловая конвекция.

Большинство современных исследователей указывают на три возможных источника энергии для поддержания тепловой конвекции в мантии. Во-первых, мантия всё ещё сохраняет большое количество тепла, накопленного в период формирования планеты. Его достаточно, чтобы поверхностный тепловой поток сохранялся на его теперешнем уровне в течение срока, в несколько раз превышающего нынешний возраст Земли. При этом планета должна остывать, но её остывание происходит очень медленно. Во-вторых, определённое количество тепла, по-видимому, поставляется в мантию из ядра. И, наконец, третий источник – это распад радиоактивных элементов (их содержание в мантии в настоящее время трудно оценить).

В настоящее время Земля обладает атмосферой массой примерно 5.15*10 кг, т.е. менее миллионной доли массы планеты. Вблизи поверхности она содержит 78.08% азота, 20.05% кислорода, 0.94% инертных газов, 0.03% углекислого газа и в незначительных количествах другие газы[2].

Давление и плотность в атмосфере убывают с высотой. Половина воздуха содержится в нижних 5.6 км, а почти вся вторая половина сосредоточена до высоты 11.3 км. На высоте 95 километров плотность воздуха в миллион раз ниже, чем у поверхности. На этом кровне и химический состав атмосферы уже иной. Растёт доля лёгких газов, и преобладающими становятся водород и гелий. Часть молекул разлагается на ионы, образуя ионосферу.

Выше 1000 км. Находятся радиационные пояса. Их тоже можно рассматривать как часть атмосферы, заполненную очень энергичными ядрами атомов водорода и электронами, захваченными магнитным полем планеты.

Вода покрывает более 70% поверхности земного шара, а средняя глубина Мирового океана около 4 км. Масса гидросферы примерно 1.46*10 кг. Это в 275 раз больше массы атмосферы, но лишь 1/4000 от массы всей Земли.

Гидросферу на 94% составляют воды Мирового океана, в которых растворены соли (в среднем 3.5%), а также ряд газов. Верхний слой океана содержит 140 трлн тонн углекислого газа, а растворённого кислорода – 8 трлл тонн.

Юпитер является одной из наиболее удивительных планет Солнечной системы. Необычайным в этой планете является не ее полосатое тело с довольно быстрым перемещением темных полос и изменением их ширины и не огромное красное пятно, диаметр которого около 60 тыс. км., изменяющее время от времени свой цвет и яркость, и, наконец, не его «господствующее» по размеру и массе положение в планетной семье. Необычайное заключается в том, что Юпитер, как показали радиоастрономические наблюдения, является источником не только теплового, а и так называемого нетеплового радиоизлучения. Вообще для планет, которым присущи спокойные процессы, нетепловое радиоизлучение является совсем неожиданным

Юпитер – вторая по яркости после Венеры планета Солнечной системы. Но если Венеру можно видеть только утром или вечером, то Юпитер иногда сверкает всю ночь.

Юпитер – это планета-гигант, которая содержит в себе более 2/3 всей нашей планетной системы. Масса Юпитера равна 318 земным. Его объем в 1300 раз больше, чем у Земли. Средняя плотность Юпитера 1330 кг/м3, что сравнимо с плотностью воды и в четыре раза меньше, чем плотность Земли. Видимая поверхность планеты в 120 раз превосходит площадь Земли. Юпитер представляет собой гигантский шар из водорода, практически его химический состав совпадает с солнечным. А вот температура на Юпитере ужасающе низкая: -140 ° С[3].

Юпитер быстро вращается (период вращения 9 ч. 55 мин. 29 с .). Из-за действия центробежных сил планета заметно расплющилась, и её полярный радиус стал на 4400 км меньше экваториального, равного 71400 км Магнитное поле Юпитера в 12 раз сильнее земного

Возле Юпитера побывало пять американских космических аппаратов: в 1973 г . – «Пионер-10» , в 1974 – «Пионер-11». В марте и в июле1979 г. его посетили более крупные и «умные» аппараты – «Вояджер-1 и –2».В декабре 1995 до него долетела межпланетная станция «Галилео», которая стала первым искусственным спутником Юпитера и сбросила в его атмосферу зонд

Атмосфера Юпитера представляет собой огромную бушующую часть планеты, состоящую из водорода и гелия. Механизм, приводящий в действие общую циркуляцию на Юпитере, такой же, как и на Земле: разность в количестве тепла, получаемого от Солнца на полюсах и экваторе, вызывает возникновение гидродинамических потоков, которые отклоняются в зональном направлении кориолисовой силой. При таком быстром вращении, как у Юпитера, линии тока практически параллельны экватору. Картина усложняется конвективными движениями, которые более интенсивны на границах между гидродинамическими потоками, имеющими разную скорость. Конвективные движения выносят вверх окрашивающее вещество, присутствием которого объясняется слегка красноватый цвет Юпитера. В области темных полос конвективные движения наиболее сильны, и это объясняет их более интенсивную окраску[15].

Так же как и в земной атмосфере, на Юпитере могут формироваться циклоны. Оценки показывают, что крупные циклоны, если они образуются в атмосфере Юпитера, могут быть очень устойчивы (время жизни до 100 тысяч лет). Вероятно, Большое Красное пятно является примером такого циклона. Изображения Юпитера, полученные при помощи аппаратуры, установленной на американских аппаратах «Пионер-10» и «Пионер-11», показали, что Красное пятно не является единственным образованием подобного типа: имеется несколько устойчивых красных пятен меньшего размера

Спектроскопическими наблюдениями было установлено присутствие в атмосфере Юпитера молекулярного водорода, гелия, метана, аммиака, этана, ацетилена и водяного пара. По-видимому, элементный состав атмосферы (и всей планеты в целом) не отличается от солнечного (90% водорода, 9% гелия, 1% более тяжелых элементов)

Полное давление у верхней границы облачного слоя составляет около 1 атм. Облачный слой имеет сложную структуру. Верхний ярус состоит из кристаллов аммиака ниже, должны быть расположен облака из кристаллов льда и капелек воды

Инфракрасная яркостная температура Юпитера, измеренная в интервале 8 – 14 мк , равна в центре диска 128 – 130К.

Наличие большого потока внутреннего тепла означает, что температура довольно быстро растет с глубиной. Согласно наиболее вероятным теоретическим моделям она достигает 400К на глубине 100 км ниже уровня верхней границы облаков, а на глубине 500 км – около 1200К. А расчеты внутреннего строения показывают, что атмосфера Юпитера очень глубокая – 10000 км, но надо отметить, что основная масса планеты (ниже этой границы) находится в жидком состоянии. Водород при этом находится в вырожденном, что то же самое, в металлическом состоянии (электроны оторваны от протонов). При этом в самой атмосфере водород и гелий, строго говоря, находятся в сверхкритическом состоянии: плотность в нижних слоях достигает 0,6-0,7г/см ³, и свойства скорее напоминают жидкость, чем газ. В самом центре планеты (по расчетам на глубине 30000 км ), возможно, находится твердое ядро из тяжелых элементов, образовавшееся в результате слипания частиц металлов и каменных образований

Юпитер преподносит много сюрпризов: он генерирует мощные полярные сияния, сильные радиошумы, возле него межпланетные аппараты наблюдают пылевые бури – потоки мелких твердых частиц, выброшенных в результате электромагнитных процессов в магнитосфере Юпитера. Мелкие частицы, которые получают электрический заряд при облучении солнечным ветром, обладают очень интересной динамикой: являясь промежуточным случаем между макро и микротелами, они примерно одинаково реагируют и на гравитационные и на электромагнитные поля

Информация о работе Солнечная система