Солнечная система

Автор работы: Пользователь скрыл имя, 25 Марта 2015 в 18:09, курсовая работа

Описание работы

Целью данной работы является анализ структуры и эволюции солнечной системы.
Данная цель обусловила необходимость решения следующих задач:
— рассмотреть планеты Солнечной системы;
— изучить строение планет;
— проанализировать происхождение планет.

Содержание работы

Введение
1. Общие сведения о солнечной системе и её планетах
1.1 Происхождение планет
1.2 Планеты и их спутники.
1.3 Строение планет.
2. Планеты солнечной системы.
2.1 Особенности планет земной группы.
2.2 Характеристика планет-гигантов.
Заключение.
Список использованной литературы.

Файлы: 1 файл

курсовая за первый курс.docx

— 99.07 Кб (Скачать файл)

ФГАОУ ВПО Северо-Восточный Федеральный университет им. М.К. Аммосова

Институт Естественных наук

Кафедра географии

 

 

 

 

 

 

Солнечная система

(курсовая работа)

 

Выполнил: ст.гр. ГО-10 ИЕН

Захаров Н. И.

Проверила: Жанна Федоровна Дегтева,

старший преподаватель

 

 

 

 

 

 

Якутск 2015 г.

 

Содержание

 

Введение

1. Общие сведения о  солнечной системе и её планетах

1.1 Происхождение планет

1.2 Планеты и их спутники.

1.3 Строение планет.

2. Планеты солнечной системы.

2.1 Особенности планет  земной группы.

2.2 Характеристика планет-гигантов.

Заключение.

Список использованной литературы.

 

 

Введение

 

Актуальность выбранной темы. Солнечная система – это, прежде всего звезда Солнце и девять планет, обращающихся вокруг него. В порядке расстояний от светила они располагаются следующим образом: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун и Плутон. Три последние планеты с Земли можно наблюдать только в телескопы. Остальные видны как более или менее яркие кружки и известны людям со времен глубокой древности.

Современные названия планет связаны с именами богов древнеримской мифологии. При этом имена, данные планетам, не случайны: в какой-то степени они характеризуют их основные качества. Так, Меркурий (посланец богов) отличается яркостью и быстрым перемещением по небу; Венера (богиня красоты и любви) – яркостью и красотой; Марс (бог войны) – кроваво-красным оттенком; Юпитер (верховный бог) – величавым и спокойным блеском; Сатурн (бог времени и судьбы) – свинцово-мертвенным сиянием и крайне медленным перемещением среди звезд. Меткость названий в известной степени свидетельствует о большой наблюдательности древних астрономов. Но, разумеется, какие-либо физические характеристики планет в то время были совершенно неизвестны, и рассуждения о планетах основывались лишь на фантазии и религиозных представлениях.

Солнечная система – весьма сложное образование, ряд закономерностей которого стал доступен для изучения лишь в последние десятилетия. Огромную роль в их исследовании приобретает сейчас космонавтика – наиболее мощное и перспективное средство познания Вселенной.

Целью данной работы является анализ структуры и эволюции солнечной системы.

Данная цель обусловила необходимость решения следующих задач:

— рассмотреть планеты Солнечной системы;

— изучить строение планет;

— проанализировать происхождение планет.

Работа состоит из введения, двух глав, заключения. В конце прилагается список использованной литературы.

 

 

1. Общие сведения о солнечной системе и её планетах

 

1.1 Происхождение планет

 

Предполагается, что планеты возникли одновременно (или почти одновременно) 4,6 млрд лет назад из газово-пылевой туманности, имевшей форму диска, в центре которого располагалось молодое Солнце. Образование звезд и планетных систем — это, по-видимому, все-таки единый процесс, происходящий в результате конденсации облака межзвездного газа в силу его гравитационной неустойчивости[16].

Для изучения вопросов происхождения небесных тел важным является определение их возраста. Определение возраста земной коры основано на исследовании содержания в ней радиоактивных элементов (урана, тория и др.), а также радиоактивных изотопов таких элементов, как калий, аргон и др. Радиоактивные элементы непрерывно распадаются, причем процесс распада совершенно не зависит от внешних воздействий. При радиоактивном распаде образуются изотопы соседних элементов периодической системы Менделеева. Эти изотопы сами нередко оказываются радиоактивными, а значит, и они распадаются. Распад заканчивается, когда атомы радиоактивных элементов превращаются в нерадиоактивные атомы химических элементов и их изотопы. Например, распад урана (238U) завершается образованием нерадиоактивного изотопа свинца (206РЬ). Промежуток времени (Т), по истечении которого остается половина начального количества радиоактивных атомов, характеризуется скоростью распада и называется периодом полураспада. Для определения возраста земной коры используются медленно распадающиеся изотопы, например урана (Т 4,5-109 лет), радиоактивный изотоп калия 40К (Т 1,3109 лет) и др. Чтобы определить возраст земной коры, сравнивают содержание радиоактивных элементов и продуктов их распада в многочисленных пробах, взятых для анализа[1]. Такое сравнение показывает, что возраст земной коры около 4,5 млрд лет. Примерно таков же возраст Земли как оформившейся планеты. К 3,5-4,5 млрд лет близок возраст лунных пород и метеоритов. Солнце, конечно, не может быть моложе Земли и Луны. Скорее всего возраст Солнца (желтой звезды) — 5 млрд лет. Сопоставление возраста Солнечной системы с возрастом Метагалактики показывает, что Солнце нельзя отнести к звездам «первого поколения». Скорее всего в состав его и планет вошел газ, уже побывавший в недрах более старых звезд. На ранних стадиях расширения Метагалактики вообще не было тяжелых химических элементов, которые впоследствии стали центрами конденсации твердых частиц, необходимых для формирования планет.

История науки знает множество гипотез о происхождении Солнечной системы. Причем эти гипотезы появились значительно раньше, чем стали известны многие важные закономерности Солнечной системы. Значение первых космогонических гипотез состояло прежде всего в том, что они пытались объяснить происхождение небесных тел как результат естественного процесса, а не одновременного акта божественного творения. Кроме этого, некоторые ранние гипотезы содержали правильные идеи о происхождении небесных тел.

Немецкий философ И. Кант в своей книге «Всеобщая естественная история и теория неба» (1755 г.) развил гипотезу, согласно которой в начале мировое пространство было заполнено материей, находившейся в состоянии первозданного хаоса. Под действием двух сил — притяжения и отталкивания — материя со временем переходила в более разнообразные формы. Элементы, имеющие большую плотность, по закону всемирного тяготения притягивали менее плотные, вследствие этого образовались отдельные сгустки материи. Под действием же сил отталкивания (которые якобы особенно эффективны, когда вещество находится в распыленном состоянии) прямолинейное движение частиц к центру тяготения заменялось кругообразным. Вследствие столкновения частиц вокруг отдельных сгустков и формировались планетные системы[15].

Совершенно другая гипотеза о происхождении планет была изложена в книге П. Лапласа «Изложение системы мира» (1769 г.). По Лапласу, на ранней стадии своего развития Солнце представляло собой огромную, медленно вращающуюся туманность. Под действием силы тяжести протосолнце сжималось, поэтому оно принимало сплюснутую форму. И как только на экваторе сила тяжести уравновешивалась центробежной силой инерции, от протосолнца отделялось гигантское кольцо, которое в дальнейшем охлаждалось и разрывалось на отдельные сгустки. Из них и формировались планеты. Такой отрыв колец от протосолнца, по Лапласу, происходил несколько раз. Аналогичным путем образовались и спутники планет. Гипотеза Лапласа, бывшая весьма популярной на протяжении почти ста лет, оказывалась не в состоянии объяснить перераспределение момента количества движения между Солнцем и планетами. Расчет показывает, что если бы все планеты упали на Солнце (т. е. вернули ему потерянный им момент количества движения), то скорость его вращения была бы недостаточной для того, чтобы могло происходить отделение колец. Кроме того, для этой и других гипотез, по которым планеты и их спутники образуются из горячего газа, камнем преткновения является еще следующее: из горячего газа планета сформироваться не может, так как этот газ очень быстро расширяется и рассеивается в пространстве[4].

В 20-е годы XX в. английский астроном Д. Джинс разработал приливную теорию происхождения Солнечной системы. По этой теории в результате случайного сближения Солнца с какой-то звездой на Солнце образовалась гигантская приливная волна, приведшая к тому, что из двух противоположных точек его поверхности началось мощное извержение струй газа. Эти газовые массы очень быстро сгущались в облака, в которых росли планетезимали — небольшие твердые тела, из которых в дальнейшем сформировались планеты[5].

В 30-х годах было высказано предположение (Г. Рессел), что в прошлом Солнце было двойной звездой. Один из компонентов был разорван встречной звездой и образовал облако, из которого позже сформировались планеты. В дальнейшем эту гипотезу видоизменили (Ф. Хойл в 1944 г.). Было выдвинуто предположение, что один из компонентов вспыхнул как сверхновая, сбросил газовую оболочку. Звезды разошлись, а из газовой оболочки образовалась планетная система[17].

Большую роль в разработке установившихся в настоящее время взглядов на происхождение планетной системы сыграли работы нашего соотечественника О. Ю. Шмидта. В основе теории О. Ю. Шмидта лежат два предположения: планеты сформировались из холодного газопылевого облака; это облако было захвачено Солнцем при его обращении вокруг центра Галактики. На основе этих предположений Шмидту удалось объяснить некоторые закономерности в строении Солнечной системы — распределение планет по расстояниям от Солнца, вращение и др. Гипотез было много, но если каждая из них хорошо объясняла часть исследований, то другую часть не объясняла[3].

Общую схему развития нашей планетной системы ученые описывают следующим образом[14].

Около 5 млрд лет назад в протяженном газопылевом облаке, пронизанном магнитными силовыми линиями, образовалось центральное сгущение — протосолнце, которое медленно сжималось. Другая часть облака, массой в 10 раз меньшей, медленно вращалась вокруг него. В результате столкновения атомов, молекул и пылинок туманность постепенно сплющивалась и разогревалась. Так вокруг Солнца образовался протяженный газопылевой диск. Его магнитное поле, «наматываясь» на протосолнце, способствовало передаче момента внешним слоям диска.

По одному из вариантов эволюции протопланетного облака, рассмотренному В. С. Сафроновым, вначале в этом облаке произошло деление компонентов — газа и пыли. Оседание пыли к центральной плоскости произошло примерно за 1000 оборотов облака вокруг Солнца. Одновременно протекал процесс роста пылинок до к 1 см.

Под действием светового давления легкие химические элементы водород и гелий «выметались» из близких окрестностей Солнца. И, наоборот, попадая на пылинки, световые лучи тормозили их движение вокруг Солнца. При этом пылевые частицы теряли свой орбитальный момент количества движения и приближались к Солнцу. Этот механизм торможения «работает» даже в случае, если размеры частицы достигают нескольких метров. В конечном итоге это и привело к существенному различию в химическом составе планет, их разделению на две группы. Таким образом, вблизи экваториальной плоскости Солнца образовался слой пыли повышенной плотности. Как только плотность этого слоя достигла критического значения, в нем возникла гравитационная неустойчивость. Вначале образовались кольца, которые быстро распались на отдельные сгущения. Их исходные размеры и массы на расстоянии в одну астрономическую единицу от Солнца достигали 40 км и 5 • 1013 кг, а на расстоянии Юпитера — соответственно 105 км и 1019кг. За счет собственной тяжести происходило дальнейшее сжатие сгустков, их уплотнение, рост больших и разрушение малых. Превращение сгущенной пыли в отдельные твердые тела продолжалось всего 10 000 лет на расстоянии в 1 а.е. и около 1 млн лет на расстоянии Юпитера от Солнца.

Далее в результате взаимных столкновений происходило слипание отдельных пылинок и образование твердых тел. Расчеты показывают, что эффективность взаимных столкновений пропорциональна четвертой степени радиуса сгущения (плане-тезимали). Это привело к быстрому росту размеров наибольших из них. В результате столкновений их орбиты приближались к круговым, а сами они превращались в зародыши планет. Со временем выживали лишь те из них, орбиты которых с учетом их взаимного притяжения оказались устойчивыми.

Подобно планетам земной группы, формировались зародыши планет-гигантов — Юпитера и Сатурна, хотя время их конденсации было в несколько раз большим. В данном случае, как только масса протопланеты достигала величины двух-трех масс Земли, начиналась интенсивная аккреция газа, входящего в протопланетное облако.

Несмотря на сходство образования, и состава исходного материала планет земной группы, в настоящий момент заметно различие в достигнутом уровне развития планет. На других планетах отсутствуют не только признаки жизни, но даже такие химические соединения, которые в ходе дальнейшей эволюции могли бы привести к появлению примитивных органических форм. Земля же обладает богатым, в высшей степени развитым органическим миром.

В раннюю историю своего существования все планеты, как Земля, пережили три общие для них фазы развития:[2]

1) фазу аккреции;

2) фазу расплавления внешней  среды (а возможно, и недр) и 

3) лунную фазу (стадию  первичной коры).

Совокупность этих фаз составляет раннюю историю планет.

небесный тело планета спутник астероид

1.2 Планеты и их спутники

 

Солнечная система образовалась около 4,6 млрд. лет назад. Группа планет, Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон, вместе с Солнцем составляют Солнечную систему.

Солнце — центральное тело Солнечной системы — это звезда, огромный газовый шар, в центре которого идут ядерные реакции. Основная доля массы Солнечной системы сосредоточена в Солнце — 99,8%. Именно поэтому Солнце удерживает гравитацией все объекты Солнечной системы, размеры которой не менее шестидесяти миллиардов километров[15].

Совсем рядом с Солнцем обращаются четыре маленьких планеты, состоящие, в основном, из горных пород и металлов — Меркурий, Венера, Земля и Марс. Эти планеты называются планетами земной группы.

Между планетами земной группы и планетами-гигантами расположен пояс астероидов[13]. Чуть дальше расположены четыре больших планеты, состоящие, в основном, из водорода и гелия. У планет-гигантов нет твердой поверхности, зато они имеют исключительно мощную атмосферу. Юпитер — самая большая из них. Далее следуют Сатурн, Уран и Нептун. Все планеты — гиганты имеют большое количество спутников, а также кольца.

Информация о работе Солнечная система