Солнечная система

Автор работы: Пользователь скрыл имя, 25 Марта 2015 в 18:09, курсовая работа

Описание работы

Целью данной работы является анализ структуры и эволюции солнечной системы.
Данная цель обусловила необходимость решения следующих задач:
— рассмотреть планеты Солнечной системы;
— изучить строение планет;
— проанализировать происхождение планет.

Содержание работы

Введение
1. Общие сведения о солнечной системе и её планетах
1.1 Происхождение планет
1.2 Планеты и их спутники.
1.3 Строение планет.
2. Планеты солнечной системы.
2.1 Особенности планет земной группы.
2.2 Характеристика планет-гигантов.
Заключение.
Список использованной литературы.

Файлы: 1 файл

курсовая за первый курс.docx

— 99.07 Кб (Скачать файл)

Самой последней планетой Солнечной системы является Плутон, который по своим физическим свойствам ближе к спутникам планет-гигантов. За орбитой Плутона открыт так называемый пояс Койпера, второй пояс астероидов.

Меркурий, ближайшая к Солнцу планета Солнечной системы, была для астрономов длительное время полной загадкой. Не был точно измерен период её вращения вокруг оси. Из-за отсутствия спутников не была точно известна масса. Близость к Солнцу мешала производить наблюдения поверхности.

Меркурий — один из самых ярких объектов на небе. По яркости он уступает только Солнцу, Луне, Венере, Марсу, Юпитеру и звезде Сириус. В соответствии с 3 законом Кеплера имеет самый маленький период обращения вокруг Солнца (88 земных дней). И самую большую среднюю скорость движения по орбите (48 км/с)[6].

Масса Меркурия равна массы Земли. Единственной планетой с меньшей массой является Плутон. По величине диаметра (4880 км, менее половины земного), Меркурий так же стоит на предпоследнем месте. Но его плотность (5.5 г/см3) приблизительно равна плотности Земли. Однако, будучи значительно меньше Земли, Меркурий испытал незначительное сжатие под действием внутренних сил. Таким образом, согласно расчетам, плотность планеты до сжатия составляет 5.3 г/см3 (для Земли это значение равно 4.5 г/см3). Такая большая несжатая плотность, превосходящая плотность любой другой планеты или спутника, свидетельствует о том, что внутреннее строение планеты отличается от строения Земли или Луны[1].

Большое значение несжатой плотности Меркурия должно обусловливаться наличием большого количества металлов. Согласно наиболее правдоподобной теории, в недрах планеты должно находиться ядро, состоящее из железа и никеля, масса которого должна составлять примерно 60 % от полной массы. А остальная часть планеты должна состоять в основном из силикатов. Диаметр ядра — 3500 км. Таким образом, оно залегает примерно на расстоянии 700 км от поверхности. Упрощенно можно представить себе Меркурий в виде металлического шара размером с Луну, покрытым скалистой 700 километровой коркой.

Одним из неожиданных открытий, сделанных американской космической миссией «Маринер 10» было обнаружение магнитного поля. Хотя оно и составляет приблизительно 1 % Земного, оно так же существенно для планеты. Это открытие стало неожиданным из-за того, что раннее считалось, что внутренняя часть планеты имеет твердое состояние, а, следовательно, магнитное поле образоваться не могло. Сложно понять каким образом такая маленькая планета смогла сохранить достаточно теплоты для поддержания ядра в жидком состоянии. Наиболее вероятное предположение заключается в том, что в ядре планеты находится значительная часть соединений железа и серы, которые замедляют охлаждение планеты и благодаря этому, по крайней мере, серо-железная часть ядра находится в жидком состоянии[13].

Первые данные, характеризующие планету с близкого расстояния, были получены в марте 1974 года благодаря космическому аппарату, запущенному в рамках американской космической миссии «Маринер 10», который приблизился на расстояние 9500 км и сфотографировал поверхность при разрешении 150 м.

Хотя температура поверхности Меркурия уже была определена на Земле, более точные данные были получены при близких измерениях. Температура на дневной стороне поверхности достигает 700 К, примерно температура плавления свинца. Однако после захода Солнца, температура быстро опускается примерно до 150 К, после чего медленнее остывает до 100 К. Таким образом, разность температур на Меркурии примерно 600К, большая чем на любой другой планете[14].

Меркурий сильно напоминает Луну по внешности. Он покрыт тысячами кратеров, большие из которых достигают 1300 км в диаметре. Так же на поверхности встречаются крутые откосы, которые могут превышать километр в высоту и сотни километров в длину, хребты и долины. Некоторые из самых больших кратеров имеют лучи подобно кратерам Тихо и Коперника на Луне и многие из них имеют центральные вершины[4].

Большинство рельефных объектов на поверхности планеты было названо в честь известных художников, композиторов и представителей других профессий, внесших свой вклад в развитие культуры. Самые большие кратеры названы Бах, Шекспир, Толстой, Моцарт, Гете.

В 1992 году астрономы обнаружили районы с высоким уровнем отражения радиоволн, по своим свойствам сходные со свойствами отражения у полюсов на Земле и на Марсе. Оказалось, что в этих районах содержится лед в кратерах, покрытых тенью. И хотя существование таких низких температур не явилось неожиданностью, загадкой оказалось происхождение этого льда на планете, остальная часть которой испытывает воздействие высоких температур и абсолютно сухая.

Отличительные черты Меркурия — длинные откосы, которые иногда пересекают кратеры, являются свидетельством сжатия. Очевидно, планета сжималась, и по поверхности шли трещины. И этот процесс происходил уже после того, как образовалось большинство кратеров. Если стандартная кратерная хронология верна по отношению к Меркурию, то это сжатие должно было происходить на протяжении первых 500 миллионов лет истории Меркурия.

Венера, как и Меркурий, раскрылась перед учеными в основном за последние полвека. Длительное время не было известно ни давление атмосферы у поверхности планеты, ни её радиуса. Астрономические наблюдения давали лишь радиус облачного слоя, окружающего планету, в пределах от 6100 до 6200 км. Атмосфера Венеры была открыта в 1761 г. М. В. Ломоносовым при наблюдении прохождения Венеры перед диском Солнца. При схождении её с диска Солнца край последнего как бы выгнулся, образовав «пупырь». М. В. Ломоносов правильно объяснил наблюдавшееся им явление преломлением солнечных лучей в атмосфере Венеры. Это явление получило название «явление Ломоносова»[16].

Масса Венеры была уточнена по пролётам мимо планеты американских космических аппаратов «Маринер-2», «Маринер-5» и «Маринер-10». Она составляет 1:408 524 массы Солнца или 84.5% массы Земли. По массе и размерам была уточнена средняя плотность Венеры, 5.27 г/см3, и определено ускорение силы тяжести на её поверхности, 885 см/сек2. Радиолокационные наблюдения, проводившиеся, начиная с 1961 г., в СССР, США и Англии, позволили определить, наконец, период её вращения. Он оказался самым большим в Солнечной системе: 243.16 суток при обратном направлении вращения. Давление атмосферы у поверхности Венеры оказалось 90 атмосфер.

Венера на 97% состоит из углекислого газа (СО2). Не более 2% приходится на долю азота и инертных газов (в первую очередь аргона). В отношении содержания кислорода различные методы дают пока противоречивые результаты, но в любом случае его меньше 0.1%. Из других газов методы инфракрасной спектроскопии позволили обнаружить окись углерода (СО2) в количестве 5•10×-5 от всей массы атмосферы, хлористый водород (НСI)-4•10•-7 и фтористый водород (НF)-10•-9. Поиски других возможных компонентов венерианской атмосферы пока не привели к положительным результатам, но ни один из них не составляет более 10•5 общего состава атмосферы[5].

У планеты имеется, как и у Земли, ионосфера. Самые верхние слои атмосферы Венеры состоят почти целиком из водорода. Водородная атмосфера Венеры простирается до высоты 5500 км. Наземные американские установки дали возможность исследовать приэкваториальную область планеты. Было обнаружено около 10 кольцевых структур, подобных метеоритным кратерам Луны и Меркурия, диаметром от 35 до 150 км, но сильно сглаженных, уплощенных. Удалось обнаружить гигантский разлом в коре планеты длинной 1500 км, шириной 150 км и глубиной 2 км. Выявлен дугообразный горный массив, пересечённый и частично разрушенный другим. Это говорит в пользу наличия сбросовых движений в коре планеты. Найден вулкан с диаметром основания 300-400 км и около 1 км в высоту. Американские учёные выявили в северном полушарии планеты огромный круглый бассейн протяжённостью около 1500 км с севера на юг и 100 км с запада на восток. Был изучен рельеф 55 районов Венеры. Среди них имеются участки как сильно всхолмлённой местности, с перепадами высот на 2-3 км, так и относительно ровной. Обнаружена большая гладкая равнина длинной около 800 км, и ещё более гладкая, чем поверхность лунных морей. Поверхность Венеры в целом более гладкая, чем поверхность Луны[1].

Фотографии поверхности Венеры показывают каменистую пустыню с характерными скальными образованьями. На снимке «Венеры-9» – осыпь камней. Это говорит о непрекращающейся тектонической активности Венеры.

Четвертая планета Солнечной системы — Марс. Орбита Марса лежит приблизительно в полтора раза дальше, чем земля. Орбита планеты несколько эллиптическая, так что расстояние планеты от Солнца изменяется от минимума, при перигелии, 206.7 миллионов км до максимума, при афелии, 249.2 миллиона км. Так как Марс — дальше от Солнца чем Земля, Марсу требуется больше времени, чтобы совершить одно обращение вокруг Солнца. Год на Марсе длится 687 земных дней. Скорость движения Марса примерно 24 км/с, причем планета вращается в том же направлении, что и Земля — против часовой стрелки (если смотреть со стороны северного полюса планеты)[7].

Марсианский день длится 24 часа, 37 минут, 23 секунды, что очень близко к продолжительности земного дня. Наклон оси планеты — приблизительно 25 градусов, вследствие чего, сезонные изменения на Марсе происходят подобно Земным. Из-за эллиптической орбиты Марса, в южном полушарии лето, когда планета находится на самом близком расстоянии к Солнцу, а в северном полушарии — зима.

Планета имеет средний диаметр 6,780 км, что составляет приблизительно половину размера Земли, и почти вдвое больше размера Луны. Из-за вращения, планета немного приплюснута у полюсов, имея фактический диаметр 6,794 км в экваторе и 6,752 км в направлении полюсов. Средняя плотность планеты (3.9 г/см3), ниже чем плотность Земли (5.5 г/см3).

Главные составляющие Марсианской атмосферы — двуокись углерода (95.3 %), азот (2.7 %), и аргон (1.6%). Малые количества кислорода, окиси углерода, водяного пара, и других веществ составляют остальную часть. Среднее поверхностное давление атмосферы — меньше одной сотой среднего поверхностного давления атмосферы Земли, и оно изменяется в зависимости от времени года и высотой. Марсианская атмосфера подвергается суточным и сезонным резким изменениям температуры. Они составляют в среднем приблизительно 220 K и изменяется от 145 K в течение полярной ночи до 300 K в области экватора в течение полудня при перигелии[8].

Хотя Марсианская атмосфера является очень тонкой и холодной, она очень активна и сложна. Глобальные атмосферные системы циркуляции воздуха на Земле и на Марсе очень похожи. В Марсианской атмосфере, как и на Земле, теплые восходящие воздушные течения на экваторе, перемещают воздушные массы, отклоняя их на восток, и затем убывают к средним широтам и возвращаются на экватор. В ветрах, дующих с запада на средней высоте находятся узкие полосы сильных ветров называемых потоками реактивного воздуха, которые производят штормовые системы близко к поверхности. Кроме того, на Марсе происходят сезонные изменения климата, в следствие солнечного нагрева и обмена двуокисью углерода между полярным льдом и морозом (речь о которых пойдет ниже) и атмосферой. Во время того, как на каждом Марсианском полушарии наступает осень и зима, углекислый газ, находящийся в составе атмосферы конденсируется и образовывает ледяные шапки, которые простираются от полюса на расстояние почти до середины расстояния между полюсом и экватором. Когда приходит весна, перепад температуры между льдом и нагретой солнцем почвой порождает сильные ветры в области края отступающей полярной шапки. Этот эффект усиливается более горячим южным летом, когда планета находится ближе к Солнцу. Сильные южные летние ветры поднимают огромные количества пыли, которые усиливаются в большие штормы. Согласно наблюдениям, эти штормы покрывают всю планету[16].

Цвет Марсианской поверхности находится в диапазоне от оранжевого до буро-черного. Более темные вещества — выветрившаяся базальтовая горная порода, и более светлые — окиси железа. С Земли видно, что чередующиеся полосы различной яркости обычно формируются в области топографических черт или вокруг них. Многие из них изменяют форму и размер с сезонной периодичностью, что свидетельствует о том, что большая часть поверхности покрыта тонким слоем пыли и песка, которые легко переносятся ветрами. Фотографии Марсианской поверхности, полученные Американскими аппаратами, совершившими посадку на поверхность Марса, в рамках миссии «Викинг» подтверждают наличие слоев, которые переносятся ветрами, а также показывают камни и булыжники разбросанные на поверхности. Эти наблюдения являются типичными для Марса, так как они подтверждаются различными измерениями, проведенными как с Земли так и с космических кораблей.

Так как на Марсе не существует океанов, и, таким образом, нет уровня моря, все измерения высоты объектов на планете измеряются относительно искусственно введенной величины, называемой средней высотой поверхности. При использовании этой точки начала отсчета, топографию Марса можно разделить на южную горную местность, покрытую кратерами, которая обычно располагается от 1 до 5 км выше начала отсчета, и на сравнительно гладкую северную низину — покрывающую почти 40 % поверхности, диапазон высот на которой от 0 до 3 км ниже точки начала отсчета. Самое большое на горной местности — возвышение Тарсис, имеющее диаметр больше 3,000 км, достигающее 10 км в высоту и состоящее из нескольких вулканических пластов. Меньшее повышение Элизиум на 5 км выше плоскости окружающей низины.

В геологическом строении Марса сочетаются характеристики и Луны и Земли. И это не является неожиданностью, потому что Марс имеет схожесть по составу с обоими телами. Однако, что действительно является неожиданностью — необъятное количество геологических особенностей на Марсе по сравнению с теми же самыми особенностями на Земле. Размер можно объяснять недостатком тектонических пластин на Марсе, который имеет тенденцию к перемещению центров процесса горообразования, атмосферой планеты и ее климатом, который обладает меньшим эрозивным действием. Другое главное отличие между двумя планетами — катастрофическое наводнение, которое произошло на Марсе, когда избыточные подземные воды были выпущены в больших объемах[9].

Первые измерения температуры Марса с помощью термометра, помещённого в фокусе телескопа-рефлектора, проводились ещё в начале 20-х годов. Измерения В. Лампланда в 1922г. дали среднюю температуру поверхности Марса 245°К (-28°С), Э. Петтит и С. Никольсон получили в 1924г. 260°К (-260°С). Более низкое значение получили в 1960г. У. Синтон и Дж. Стронг: 230°К (-43°С). Позднее, в 50-е и 60-е гг. были накоплены и обобщены многочисленные измерения температур в различных точках поверхности Марса, в разные сезоны и времена суток. Из этих измерений следовало, что днём на экваторе температура может доходить до 300°К (+27°С), но уже к вечеру она падает до нуля, а к утру до 223°К (-50°С). На полюсах температура может колебаться от +10°С в период полярного дня до очень низких температур во время полярной ночи. В 1956 г. к измерению температур был применён новый метод – радиоастрономический. Марс, как и всякое нагретое тело, испускает не только инфракрасное излучение, но и более длинноволновое, лежащее в радиодиапазоне. Его принято называть тепловым радиоизлучением, в отличие от нетеплового, связанного с различными электромагнитными и плазменными процессами. Измеряя поток теплового радиоизлучения, можно определить температуру планеты. Первые такие измерения выполнили К. Майер, Т. Мак Каллаф и Р. Слонейкер в 1956 г. Они получили среднюю температуру поверхности Марса 218°К, т.е. заметно ниже, по инфракрасному излучению. Измерения, проведённые в последние годы с космических кораблей, показали, что на Марсе могут наблюдаться и ещё более низкие температуры, доходящие до 140°К — ниже точки замерзания углекислого газа. Многочисленные ряды измерений радиотемператур Марса выполнены советскими учёными А. Д. Кузьминым, Ю. Н. Ветухновской, Б. Я. Лосовским, Б. Г. Кутузой и другими. Во время великого противостояния 1971 г., по их измерениям, средняя температура Марса составляла 198°К[7].

Информация о работе Солнечная система