Автор работы: Пользователь скрыл имя, 08 Декабря 2011 в 00:01, курсовая работа
Цель данной работы заключается в построении прогноза по статистическим данным индустрии гостеприимства собранным за несколько предыдущих лет и анализ прогноза на будущий период.
Задачи данной работы могут быть сформулированы следующим образом: раскрытие понятия о временных рядах и существующих в индустрии гостеприимства методах построения прогнозов; приведение конкретного примера с помощью программы Statgraphics Plus - анализ данных по ежемесячной загрузке гостиниц Северной Ирландии, выявление трендов и моделей сезонности, анализ случайности; построение прогноза с помощью функции автоматическое прогнозирование и анализ полученных данных с их дальнейшей трактовкой и выработкой конкретных рекомендаций и выводов по данной ситуации.
Введение…………………………………………………………….……………3
I. Теоретическое обоснование прогнозирования в индустрии гостеприимства и туризма
Сущность и методы прогнозирования…………………………….…….….5
Понятие временных рядов и основные этапы их анализа……………....…7
Общая характеристика STATGRAPHICS и его особенности………….....10
II. Анализ временных рядов в STATGRAPHICS…………………………..12
III. Автоматическое прогнозирование временных рядов………………...22
Заключение………………………………………………………………….…..31
Список использованной литературы……………
0,452381 2,21053 7,67477 212,568 0,926203
0,464286 2,15385 0,879875 213,448 0,930037
0,47619 2,1 14,0194 227,468 0,991122
0,488095 2,04878 2,03755 229,505 1,0
0,5
2,0
0,0000212023 229,505
1,0
The StatAdvisor
---------------
This table shows the periodogram ordinates for the residuals. It
is often used to identify cycles of fixed frequency in the data. The
periodogram is constructed by fitting a series of sine functions at
each of 43 frequencies. The ordinates are equal to the squared
amplitudes of the sine functions. The periodogram can be thought of
as an analysis of variance by frequency, since the sum of the
ordinates equals the total corrected sum of squares in an ANOVA table.
You can plot the periodogram ordinates by selecting Periodogram from
the list of Graphical Options.
Tests for Randomness of residuals
Data variable: Occupancy rate
Model: Simple exponential smoothing with alpha = 0,7043
Runs above and below median
---------------------------
Median = 0,194872
Number of runs above and below median = 44
Expected number of runs = 43,0
Large sample test statistic z = 0,109772
P-value
= 0,912585
Runs up and down
---------------------------
Number of runs up and down = 60
Expected number of runs = 55,6667
Large sample test statistic z = 1,00285
P-value
= 0,315933
Box-Pierce Test
---------------
Test based on first 24 autocorrelations
Large sample test statistic = 23,9981
P-value
= 0,403914
The StatAdvisor
---------------
Three tests have been run to determine whether or not the residuals
form a random sequence of numbers. A sequence of random numbers is
often called white noise, since it contains equal contributions at
many frequencies. The first test counts the number of times the
sequence was above or below the median. The number of such runs
equals 44, as compared to an expected value of 43,0 if the sequence
were random. Since the P-value for this test is greater than or equal
to 0.10, we cannot reject the hypothesis that the residuals are random
at the 90% or higher confidence level. The second test counts the
number of times the sequence rose or fell. The number of such runs
equals 60, as compared to an expected value of 55,6667 if the sequence
were random. Since the P-value for this test is greater than or equal
to 0.10, we cannot reject the hypothesis that the series is random at
the 90% or higher confidence level. The third test is based on the
sum of squares of the first 24 autocorrelation coefficients. Since
the P-value for this test is greater than or equal to 0.10, we cannot
reject the hypothesis that the series is random at the 90% or higher
confidence level.
Forecasting - Occupancy rate
Analysis Summary
Data variable: Occupancy rate
Number of observations = 84
Start index = 1.97
Sampling interval = 1,0 month(s)
Length of seasonality = 12
Forecast Summary
----------------
Forecast model selected: ARIMA(3,0,2)x(3,0,2)12 with constant
Number of forecasts generated: 24
Number of periods withheld
for validation: 0
Estimation Validation
Statistic Period Period
------------------------------
RMSE
1,66846
MAE
1,20884
MAPE
2,80188
ME
0,189659
MPE
0,393969
ARIMA Model Summary
Parameter Estimate Stnd. Error t P-value
------------------------------
AR(1) -0,181615 0,135409 -1,34123 0,184004
AR(2) 0,0152056 0,139689 0,108854 0,913617
AR(3) 0,550154 0,118119 4,65762 0,000014
MA(1) -0,811644 0,0938311 -8,65006 0,000000
MA(2) -0,822767 0,0924359 -8,90095 0,000000
SAR(1) 0,958282 0,188335 5,08817 0,000003
SAR(2) -0,308114 0,181564 -1,697 0,093957
SAR(3) 0,339545 0,124208 2,73368 0,007854
SMA(1) 1,01597 0,169718 5,98626 0,000000
SMA(2) -0,384302 0,130704 -2,94025 0,004390
Mean 57,5939 14,8685 3,87355 0,000232
Constant 0,365119
------------------------------
Backforecasting: yes
Estimated white noise variance = 3,06678 with 73 degrees of freedom
Estimated white noise standard deviation = 1,75122
Number of iterations: 20
The StatAdvisor
---------------
This procedure will forecast future values of Occupancy rate. The
data cover 84 time periods. Currently, an autoregressive integrated
moving average (ARIMA) model has been selected. This model assumes
that the best forecast for future data is given by a parametric model
relating the most recent data value to previous data values and
previous noise. Each value of Occupancy rate has been adjusted in the
following way before the model was fit:
You can select a different forecasting model by pressing the alternate
mouse button and selecting
Analysis Options.
The output summarizes the statistical significance of the terms in
the forecasting model. Terms with P-values less than 0.05 are
statistically significantly different from zero at the 95% confidence
level. The P-value for the AR(3) term is less than 0.05, so it is
significantly different from 0.0. The P-value for the MA(2) term is
less than 0.05, so it is significantly different from 0.0. The
P-value for the SAR(3) term is less than 0.05, so it is significantly
different from 0.0. The P-value for the SMA(2) term is less than
0.05, so it is significantly different from 0.0. The P-value for the
constant term is less than 0.05, so it is significantly different from
0.0. The estimated standard deviation of the input white noise equals
1,75122.
The table also summarizes the performance of the currently selected
model in fitting the historical data. It displays:
(1) the root mean squared error (RMSE)
(2) the mean absolute error (MAE)
(3) the mean absolute percentage error (MAPE)
(4) the mean error (ME)
(5) the mean percentage error (MPE)
Each of the statistics is based on the one-ahead forecast errors,
which are the differences between the data value at time t and the
forecast of that value made at time t-1. The first three statistics
measure the magnitude of the errors. A better model will give a
smaller value. The last two statistics measure bias. A better model
will give a value close to
0.0.
Forecast Table for Occupancy
rate
Model: ARIMA(3,0,2)x(3,0,2)12 with constant
Period Data Forecast Residual
------------------------------
1.97 29,0 27,9184 1,08162
2.97 36,0 36,1943 -0,194298
3.97 38,0 37,357 0,643
4.97 39,0 40,1401 -1,14011
5.97 45,0 45,7092 -0,709246
6.97 49,0 47,8382 1,1618
7.97 40,0 43,3304 -3,33038
8.97 55,0 51,8065 3,19348
9.97 53,0 51,4202 1,57984
10.97 47,0 46,2408 0,759243
11.97 42,0 42,6701 -0,670127
12.97 33,0 31,6039 1,3961
1.98 31,0 31,1722 -0,172239
2.98 39,0 38,2008 0,799226
3.98 38,0 38,3821 -0,382069
4.98 40,0 41,6581 -1,65811
5.98 46,0 46,3473 -0,347341
6.98 45,0 47,8291 -2,82908
7.98 43,0 42,3448 0,655243
8.98 52,0 51,2559 0,744128
9.98 49,0 50,5836 -1,58361
10.98 42,0 42,8515 -0,851506
11.98 38,0 37,7039 0,296142
12.98 29,0 29,2337 -0,233667
1.99 30,0 28,601 1,39902
2.99 35,0 35,948 -0,94805
3.99 37,0 36,9308 0,0691882
4.99 41,0 40,8847 0,115281
5.99 47,0 46,6498 0,35016
6.99 52,0 50,7403 1,25974
7.99 48,0 46,3427 1,65727
8.99 54,0 55,0925 -1,09248
9.99 54,0 52,9861 1,01385
10.99 46,0 44,7723 1,22768
11.99 42,0 41,7381 0,261897
12.99 30,0 32,8496 -2,84955
1.00 28,0 28,7932 -0,793177
2.00 36,0 35,028 0,972026
3.00 37,0 37,5866 -0,586583
4.00 45,0 40,4073 4,59272
5.00 50,0 48,8499 1,1501
6.00 52,0 53,8607 -1,86071
7.00 46,0 45,1808 0,8192
8.00 52,0 54,3569 -2,35686
9.00 51,0 52,1869 -1,18694
10.00 41,0 43,2492 -2,24918
11.00 38,0 37,3167 0,683345
Информация о работе Прогнозирование в индустрии гостеприимства и туризма