Автор работы: Пользователь скрыл имя, 08 Декабря 2011 в 00:01, курсовая работа
Цель данной работы заключается в построении прогноза по статистическим данным индустрии гостеприимства собранным за несколько предыдущих лет и анализ прогноза на будущий период.
Задачи данной работы могут быть сформулированы следующим образом: раскрытие понятия о временных рядах и существующих в индустрии гостеприимства методах построения прогнозов; приведение конкретного примера с помощью программы Statgraphics Plus - анализ данных по ежемесячной загрузке гостиниц Северной Ирландии, выявление трендов и моделей сезонности, анализ случайности; построение прогноза с помощью функции автоматическое прогнозирование и анализ полученных данных с их дальнейшей трактовкой и выработкой конкретных рекомендаций и выводов по данной ситуации.
Введение…………………………………………………………….……………3
I. Теоретическое обоснование прогнозирования в индустрии гостеприимства и туризма
Сущность и методы прогнозирования…………………………….…….….5
Понятие временных рядов и основные этапы их анализа……………....…7
Общая характеристика STATGRAPHICS и его особенности………….....10
II. Анализ временных рядов в STATGRAPHICS…………………………..12
III. Автоматическое прогнозирование временных рядов………………...22
Заключение………………………………………………………………….…..31
Список использованной литературы……………
Estimation Validation
Statistic Period Period
------------------------------
RMSE
1,72215
MAE
1,26657
MAPE
2,95827
ME
0,122105
MPE
0,182382
The StatAdvisor
---------------
This procedure will forecast future values of Occupancy rate. The
data cover 84 time periods. Currently, a simple exponential smoothing
model has been selected. This model assumes that the best forecast
for future data is given by an exponentially weighted average of all
previous data values. Each value of Occupancy rate has been adjusted
in the following way before the model was fit:
(1) A multiplicative seasonal
adjustment was applied.
The table also summarizes the performance of the currently selected
model in fitting the historical data. It displays:
(1) the root mean squared error (RMSE)
(2) the mean absolute error (MAE)
(3) the mean absolute percentage error (MAPE)
(4) the mean error (ME)
(5) the mean percentage error (MPE)
Each of the statistics is based on the one-ahead forecast errors,
which are the differences between the data value at time t and the
forecast of that value made at time t-1. The first three statistics
measure the magnitude of the errors. A better model will give a
smaller value. The last two statistics measure bias. A better model
will give a value close to
0.0.
Model Comparison
----------------
Data variable: Occupancy rate
Number of observations = 84
Start index = 1.97
Sampling interval = 1,0 month(s)
Length of seasonality = 12
Models
------
(H) Simple exponential smoothing with alpha = 0,7043
(L) Winter's exp. smoothing with alpha = 0,3136, beta = 0,0876, gamma = 0,5632
(M) ARMA(0,0) SARMA(0,0)
(N) ARMA(1,0) SARMA(1,0)
(O) ARMA(2,1) SARMA(2,1)
(P) ARMA(3,2) SARMA(3,2)
(Q) ARMA(4,3) SARMA(4,3)
Estimation Period
Model RMSE MAE MAPE ME MPE SBIC
------------------------------
(H) 1,72215 1,26657 2,95827 0,122105 0,182382 1,13989
(L) 2,34026 1,76564 4,17822 -0,250179 -0,645721 1,85877
(M) 7,92509 6,63095 16,508 3,38354E-16 -3,69663 4,19282
(N) 2,34188 1,74024 4,05966 0,123703 0,0796252 1,86015
(O) 1,86524 1,35401 3,16279 0,233571 0,512876 1,61601
(P) 1,66846 1,20884 2,80188 0,189659 0,393969 1,60403
(Q) 1,1915
0,738663 1,69042
0,17732 0,44224
1,14164
Model RMSE RUNS RUNM AUTO MEAN VAR
------------------------------
(H) 1,72215 OK OK OK OK OK
(L) 2,34026 OK *** OK OK OK
(M) 7,92509 *** *** *** OK OK
(N) 2,34188 OK OK * OK OK
(O) 1,86524 OK OK OK OK OK
(P) 1,66846 OK OK OK OK OK
(Q) 1,1915
OK OK ** OK
***
Key:
RMSE = Root Mean Squared Error
RUNS = Test for excessive runs up and down
RUNM = Test for excessive runs above and below median
AUTO = Box-Pierce test for excessive autocorrelation
MEAN = Test for difference in mean 1st half to 2nd half
VAR = Test for difference in variance 1st half to 2nd half
OK = not significant (p >= 0.05)
* = marginally significant (0.01 < p <= 0.05)
** = significant (0.001 < p <= 0.01)
*** = highly significant (p
<= 0.001)
The StatAdvisor
---------------
This table compares the results of fitting different models to the
data. The model with the lowest value of the Schwarz Bayesian
Information Criterion (SBIC) is model H, which has been used to
generate the forecasts.
The table also summarizes the results of five tests run on the
residuals to determine whether each model is adequate for the data.
An OK means that the model passes the test. One * means that it fails
at the 95% confidence level. Two *'s means that it fails at the 99%
confidence level. Three *'s means that it fails at the 99.9%
confidence level. Note that the currently selected model, model H,
passes 5 tests. Since no tests are statistically significant at the
95% or higher confidence level, the current model is probably adequate
for the data.
Estimated Autocorrelations
for residuals
Data variable: Occupancy rate
Model: Simple exponential smoothing with alpha = 0,7043
Lag Autocorrelation Stnd. Error Prob. Limit Prob. Limit
------------------------------
1 -0,013809 0,109109 -0,21385 0,21385
2 0,0744767 0,10913 -0,213891 0,213891
3 -0,106439 0,109733 -0,215073 0,215073
4 -0,252986 0,110955 -0,217469 0,217469
5 -0,0128943 0,117622 -0,230536 0,230536
6 -0,0259049 0,117639 -0,230569 0,230569
7 -0,118581 0,117707 -0,230702 0,230702
8 -0,000901013 0,119121 -0,233472 0,233472
9 0,0573048 0,119121 -0,233473 0,233473
10 -0,0606539 0,119448 -0,234115 0,234115
11 0,157264 0,119814 -0,234832 0,234832
12 -0,148652 0,122247 -0,2396 0,2396
13 -0,00520587 0,12438 -0,243782 0,243782
14 0,0531173 0,124383 -0,243787 0,243787
15 0,00111586 0,124653 -0,244315 0,244315
16 -0,0774865 0,124653 -0,244316 0,244316
17 -0,0974508 0,125225 -0,245437 0,245437
18 -0,145287 0,126125 -0,2472 0,2472
19 0,152848 0,128101 -0,251075 0,251075
20 0,219246 0,130255 -0,255295 0,255295
21 0,0747522 0,134576 -0,263765 0,263765
22 -0,019244 0,13507 -0,264732 0,264732
23 0,0333537 0,135102 -0,264796 0,264796
24
-0,134053 0,1352
-0,264988 0,264988
The StatAdvisor
---------------
This table shows the estimated autocorrelations between the
residuals at various lags. The lag k autocorrelation coefficient
measures the correlation between the residuals at time t and time t-k.
Also shown are 95,0% probability limits around 0.0. If the
probability limits at a particular lag do not contain the estimated
coefficient, there is a statistically significant correlation at that
lag at the 95,0% confidence level. In this case, one of the 24
autocorrelation coefficients is statistically significant at the 95,0%
confidence level, implying that the residuals may not be completely
random (white noise). You can plot the autocorrelation coefficients
by selecting Residual Autocorrelation Function from the list of
Graphical Options.
Periodogram for residuals
Data variable: Occupancy rate
Model: Simple exponential smoothing with alpha = 0,7043
Frequency Period Ordinate Sum Periodogram
------------------------------
0,0
0,0119048 84,0 1,68327 1,68327 0,00733436
0,0238095 42,0 1,74214 3,42542 0,0149252
0,0357143 28,0 2,86663 6,29204 0,0274157
0,047619 21,0 3,59356 9,8856 0,0430735
0,0595238 16,8 12,0593 21,9449 0,0956185
0,0714286 14,0 1,8318 23,7767 0,1036
0,0833333 12,0 0,120269 23,897 0,104124
0,0952381 10,5 25,1207 49,0177 0,21358
0,107143 9,33333 7,0743 56,092 0,244404
0,119048 8,4 2,4575 58,5496 0,255112
0,130952 7,63636 8,48899 67,0385 0,2921
0,142857 7,0 6,1288 73,1673 0,318805
0,154762 6,46154 16,4885 89,6559 0,390648
0,166667 6,0 0,489193 90,145 0,39278
0,178571 5,6 0,00375281 90,1488 0,392796
0,190476 5,25 4,23671 94,3855 0,411257
0,202381 4,94118 18,3285 112,714 0,491118
0,214286 4,66667 1,24095 113,955 0,496525
0,22619 4,42105 2,2119 116,167 0,506162
0,238095 4,2 1,02668 117,194 0,510636
0,25 4,0 0,387054 117,581 0,512322
0,261905 3,81818 5,76044 123,341 0,537422
0,27381 3,65217 0,928316 124,269 0,541467
0,285714 3,5 1,55601 125,825 0,548246
0,297619 3,36 0,819327 126,645 0,551816
0,309524 3,23077 6,06532 132,71 0,578244
0,321429 3,11111 0,0870613 132,797 0,578623
0,333333 3,0 0,297391 133,094 0,579919
0,345238 2,89655 2,28342 135,378 0,589869
0,357143 2,8 23,8678 159,246 0,693865
0,369048 2,70968 8,37424 167,62 0,730353
0,380952 2,625 8,87059 176,49 0,769004
0,392857 2,54545 3,71859 180,209 0,785207
0,404762 2,47059 8,18305 188,392 0,820862
0,416667 2,4 0,728399 189,121 0,824036
0,428571 2,33333 7,76723 196,888 0,857879
0,440476 2,27027 8,00581 204,894 0,892762
Информация о работе Прогнозирование в индустрии гостеприимства и туризма