Автор работы: Пользователь скрыл имя, 14 Декабря 2010 в 22:27, реферат
Что делать, если автомобиль уже не слушается водителя, и вообще ему (автомобилю) все надоело? Этот вопрос очень сложный, ибо навыками управления в критических ситуациях владеют далеко не все, а возможности систем автоматического управления (АБС, систем стабилизации, если они есть), тоже не беспредельны. Так что не исключен вариант, когда самое неприятное все же произойдет, и тогда от водителя не зависит уже ничего. Теперь за жизнь и здоровье людей будет бороться автомобиль. Итак, нужно научить автомобиль спасать людей. И эта задача – самая трудная.
Пассивная безопасность и ее оценка
Что делать, если автомобиль уже не слушается водителя, и вообще ему (автомобилю) все надоело? Этот вопрос очень сложный, ибо навыками управления в критических ситуациях владеют далеко не все, а возможности систем автоматического управления (АБС, систем стабилизации, если они есть), тоже не беспредельны. Так что не исключен вариант, когда самое неприятное все же произойдет, и тогда от водителя не зависит уже ничего. Теперь за жизнь и здоровье людей будет бороться автомобиль. Итак, нужно научить автомобиль спасать людей. И эта задача – самая трудная.
Пассивная безопасность – это свойство автомобиля уменьшать тяжесть последствий ДТП, если оно все же случилось. Пассивная безопасность проявляется в период, когда водитель, несмотря на принятые меры безопасности, не может изменить характер движения автомобиля и предотвратить ДТП.
Различают внутреннюю пассивную безопасность, снижающую травматизм пассажиров, водителя и обеспечивающую сохранность грузов, перевозимых автомобилем, и внешнюю безопасность, которая уменьшает возможность нанесения повреждений другим участникам движения. Иногда применяют термин “агрессивность” автомобиля, как понятие, обратное его внешней пассивной безопасности.
Изучение статистических данных по аварийности показывает, что с ростом автомобильного парка и интенсивности движения уменьшается относительное число наездов на пешеходов и возрастает количество столкновений, опрокидываний и наездов автомобилей на неподвижное препятствие. Одновременно возрастает значение внутренней пассивной безопасности.
Для оценки пассивной безопасности автомобиля предложено несколько измерителей. Наиболее простой измеритель – фактор тяжести – представляет собой отношение числа погибших Nс во время ДТП к числу раненых Np: Fт = Nc /Np.
По данным официальных отчетов, фактор тяжести Fт в различных странах находится в пределах 1:5–1:40. Иногда тяжесть ДТП определяют по отношению числа тяжело раненых Nт и погибших Nc к общему числу ДТП Nдтп:
F'т = (Nт + Nc) / Nдтп.
По имеющимся данным, при скорости автомобиля менее 14 м/с F'т » 0,05. При росте скорости F'т увеличивается и при 35 м/с достигает 0,4.
Применяются также
удельные показатели: число раненых
и погибших при ДТП, отнесенные к
1 млн. жителей, 1 млн. км пробега или
1 млн. автомобилей.
Биомеханика основных видов ДТП
В процессе наиболее тяжелых ДТП (столкновения, наезды на неподвижные препятствия, опрокидывания) вначале деформируется кузов автомобиля, происходит первичный удар. Кинетическая энергия автомобиля при этом тратится на поломку и деформацию деталей. Человек внутри автомобиля продолжает движение по инерции с прежней скоростью. Силы, удерживающие тело человека (мышечные усилия конечностей, трение о поверхность сиденья), невелики по сравнению с инерционными нагрузками и не могут воспрепятствовать перемещению. Когда человек контактирует с деталями автомобиля – рулевым колесом, панелью приборов, ветровым стеклом и т.п., происходит вторичный удар. Параметры вторичного удара зависят от скорости и замедления автомобиля, перемещения тела человека, формы и механических свойств деталей, о которые он ударяется. При высоких скоростях автомобиля возможен также третичный удар, т.е. удар внутренних органов человека (например, мозговой массы, печени, сердца) о твердые части скелета. В 1994 г. в Имоле разбился великий пилот Формулы 1, Айртон Сенна. Находясь в прочном монококе, он не получил опасных для жизни “внешних” травм, а скончался от многочисленных повреждений внутренних органов и головного мозга, вызванных перегрузкой. Монокок остался практически цел, пилота убило почти мгновенное замедление со скорости 300 км/ч до нуля. При распространенных на наших дорогах скоростях большую часть травм водители и пассажиры получают во время вторичного удара.
Наибольшее значение для внутренней пассивной безопасности имеют столкновения транспортных средств и их наезды на неподвижное препятствие, а для внешней – наезды на пешеходов.
По статистике, самое опасное сиденье в машине – правое переднее, потому что инстинктивно, в самый последний момент, водитель все же отводит удар от себя, причем самые серьезные телесные повреждения получает пассажир, не пользовавшийся ремнем безопасности. На втором месте - водительское. На третьем - заднее правое. А самое безопасное место - сзади, за водителем.
На рис. 1 показан механизм образования травм при встречных столкновениях у водителя легкового автомобиля. В начале удара водитель скользит по сиденью вперед, и его колени ударяются о панель приборов (рис. 1, а и б). Затем сгибаются тазобедренные суставы, и верхняя часть туловища наклоняется вперед до удара о рулевое колесо (в и г). При больших скоростях автомобиля возможен удар о ветровое стекло (д и е), а при боковых столкновениях – повреждение головы об угловую сторону кузова. Передний пассажир, перемещаясь вперед, также ударяется сначала коленями о панель приборов, затем головой о ветровое стекло (рис. 2, а–г). В случае движения автомобиля с большой скоростью возможно травмирование подбородка и груди пассажира о верхний край панели приборов (рис. 2, д и е). При боковых ударах повреждаются плечи, руки и колени. Таким образом, источниками травм водителя наиболее часто являются рулевая колонка, рулевое колесо, панель приборов. Для передних пассажиров опасность представляют панель приборов и ветровое стекло, а для задних – спинки передних сидений. Кнопки и рычаги управления, пепельницы, детали радиоприемника обычно не наносят серьезных ранений. Однако при ударе о них головой у водителя и пассажиров может быть повреждено лицо. Также источниками повреждений являются детали дверей. Большое число травм получают люди при выбрасывании через двери, открывшиеся вследствие удара.
Рис. 1. Механизм образования травм у водителя при столкновении автомобилей
Рис. 2. Механизм образования травм у переднего пассажира
Кроме того, необходимо учитывать, следующие моменты:
– двигатель, который у большинства современных автомобилей находится впереди, в результате удара вполне может оказаться внутри салона и упасть на ноги;
– если автомобиль “догоняют” сзади, то резкое запрокидывание головы – верный перелом позвоночника;
– отдельные детали интерьера могут при ударе срываться со своих мест и отправляться в путешествие по салону.
Внутренняя пассивная безопасность
Когда автомобиль ударяется о препятствие, то человек по инерции продолжает движение внутри остановившегося автомобиля. Но недолго – до ближайшего твердого предмета, которых в салоне вполне достаточно.
Представьте себе автомобиль, врезающийся в бетонную стенку на скорости 72 км/ч (20 м/с). Если считать движение равнозамедленным, то при деформации его моторного отсека sa = 0,8 м среднее замедление составит
jср = v2/ (2sa) = 400/ (2*0,8) = 250 м/с2 = 25,5 g.
При этом перегрузка, действующая на пассажиров, составит 25,5g, то есть человека, весящего 75 кг, “приложит” о приборную доску с силой в 1912 кг! Упираться руками и ногами бесполезно. Кстати, аналогичный расчет показывает, почему прочные джипы более опасны для пассажиров. В подобных условиях мощная рамная конструкция сомнется всего на 0,3–0,4 м. Соответственно, перегрузки и силы, действующие на пассажиров, вырастут в два раза со всеми вытекающими последствиями.
По действующим Правилам ЕЭК ООН № 32, 33, 94, 95 жизнь водителя и пассажиров должна быть сохранена при наезде автомобиля на неподвижное препятствие со скоростью 14 м/с; во время столкновения автомобилей при скорости 19,4 м/с; в случае удара сзади по автомобилю предметом массой до 1250 кг со скоростью 22,2 м/с; при боковом ударе (под углом 90°) со скоростью 9 м/с; во время двух- или трехкратного переворачивания автомобиля с начальной скоростью 14 м/с.
Кузов
Слишком жесткая и прочная конструкция не поглощает энергию удара, а передает ее почти полностью тем, кто находится внутри. Т.о., даже надежно зафиксировав чем-то водителя и пассажиров, мы еще не решаем всех проблем. Человеческий организм в состоянии выдержать не всякую перегрузку (без вреда можно перенести до 50g). То есть в любом случае нужно как-то смягчить удар, сделать остановку возможно менее резкой. Но, с другой стороны, вряд ли можно остаться живым и здоровым, если автомобиль искорежен до такой степени, что рычаг переключения передач “прошил” потолочный фонарь. А, значит, та часть кузова, где находятся люди, в случае аварии должна деформироваться как можно меньше.
Первые прототипы оптимального кузова появились уже в 40-х годах, а 30 октября 1952 г. концерн Daimler-Benz получил патент на разработанную Бела Барени (Bela Barenyi) концепцию пассивной безопасности легкового автомобиля, ставшую основой для всего, что и поныне делается в этой области во всем мире. В соответствии с этой концепцией задачу по поглощению кинетической энергии автомобиля выполняет... сам кузов, точнее – его часть.
Принцип прост. В передней и задней частях кузова организуются деформируемые зоны – силовая структура умышленно ослабляется в продольном направлении (рис. 3). Ослабляют лонжероны и поперечины, уменьшая их сечение или толщину стенок, предусматривая отверстия в слабонагруженных местах. Соответственно, при столкновении эти части подвергаются значительному разрушению, но при этом поглощается немалая часть энергии движения – замедление автомобиля становится уже не столь интенсивным, удар “смягчается”. Автомобильный кузов гибнет, спасая людей.
Особенно впечатляющих
результатов удалось достичь
в последние годы – стремительный
прогресс вычислительной техники, и
совершенствование современных
методов расчета позволяют
Рис. 3. Кузов
Subaru Legacy 66L Wagon с замкнутым кольцеобразным
укрепляющим контуром
Однако мы не должны забывать и о том, что при аварии в салоне автомобиля должно остаться достаточно свободного места для людей. Именно поэтому ослабление силовой структуры в деформируемых зонах сочетается с повышением жесткости центральной части, где деформации крайне нежелательны. Тем самым идея каркаса безопасности работает не только в автоспорте. Обратите внимание, насколько массивнее за последние годы стали передние стойки кузова, причем нередко – в ущерб обзорности! Да и конструкция многих других элементов силовой структуры в наше время определяется именно таким образом, чтобы обеспечить предельную жесткость и рассеяние энергии удара по возможно большему числу направлений (рис. 3). Большое внимание уделяется дверным проемам: здесь важно избежать заклинивания дверей. Кстати, и дверные замки сильно изменились за последние двадцать лет вследствие борьбы с самопроизвольным открыванием. В стандартах и Правилах ЕЭК ООН №11 оговаривается, что конструкция замков должна обеспечивать два положения: полностью закрытое и не полностью закрытое.
Детали автомобиля, ограничивающие жизненное пространство, должны быть без острых граней и углов, выступающие части (кнопки, выключатели, ручки) должны быть утоплены и покрыты мягкой обивкой. Детали, выступающие над панелью более чем на 9,5 мм, должны под действием горизонтального усилия 390 Н, направленного вперед, утапливаться (так, чтобы высота части детали, выступающей над панелью, была не более 9,5 мм), отсоединяться или обламываться.
Ноги тоже надо беречь. На некоторых машинах 60-х годов типичной травмой была разбитая о замок зажигания и ключи коленная чашечка. Сейчас под левое колено водителя ставят что-нибудь более безобидное – например, гладкий и хрупкий блок предохранителей.
Нет предела совершенству. Когда защита от фронтального удара и удара сзади дала заметный результат, в статистике более ярко “засветились” травмы от ударов сбоку. Последовало соответствующее усиление порогов и центральных стоек, появились мощные поперечины, “распирающие” кузов, а также защитные брусья в дверях (рис. 3) и боковые энергопоглощающие вставки. В качестве “заполнителя” полостей используют сотовые структуры (раньше – алюминиевые, теперь часто пластмассовые).
Смещение внутрь салона элементов конструкции
Не будем забывать, что в передней деформируемой зоне находится рулевой механизм, а у большинства автомобилей – еще и двигатель (вместе с коробкой передач), которые при аварии первыми встретят и упрутся в препятствие. А значит, непременно окажутся внутри “наезжающего” на них салона. И от этой серьезнейшей опасности, увы, не спасет и жесткий каркас. Кстати, именно рулевой вал и “баранка” были основными виновниками тяжелейших травм и гибели водителей в “добезопасные” времена.
С двигателем и трансмиссией справиться проще – здесь все решает система крепления, обеспечивающая “уход” силового агрегата под днище при фронтальном ударе (рис. 4). Правда, в нашей стране “противостояние” затянулось: конструкторы не предполагали, что под двигателем может оказаться прочнейшая титановая защита картера, поставленная автовладельцем, которая не позволяет силовому агрегату благополучно “упасть” под днище.
Рис. 4. Безопасное расположение силового агрегата Mercedes-Benz A-класса.
С рулевым механизмом несколько сложнее: рулевая колонка и рулевое колесо, что называется, по определению, занимают место в салоне.