Контрольная работа по технологии товаров

Автор работы: Пользователь скрыл имя, 26 Мая 2010 в 01:40, Не определен

Описание работы

Содержание
1. Технологические операции и процессы изготовления керамических изделий методом полусухого прессования, применяемое оборудование, возможные виды производственных дефектов 3
2. Полиамидные волокна и нити, их виды, способы получения, основные свойства, применение 9
3. Общее устройство автоматического ткацкого станка (одного из видов: одночелночного, многочелночного или бесчелночного), основные механизмы, их назначение, общее устройство. 17
4. Пушно-меховое сырье, его виды, сферы применения для производства потребительских товаров 23
Список использованной литературы 36

Файлы: 1 файл

Краева Вариант 80.doc

— 425.50 Кб (Скачать файл)

     Полимер синтезируют обычно на том же предприятии, на котором производят волокно. В получаемом поли-e-капроамиде содержится до 10% низкомолекулярное соединение (в основном мономер и его низшие олигомеры). Присутствие их в полимере затрудняет последующее формование волокна и отрицательно сказывается на его свойствах. Поэтому для удаления низкомолекулярного соединения полимер подвергают тн демономеризации - вакуумированию расплава или водной обработке полимерного гранулята, который затем (содержание воды 7-10%) сушат в токе нагретого азота, предварительно очищенного от кислорода (содержание O2 не должно превышать 0,0003%). Количество остаточной влаги зависит от условий формования волокна и молекулярной массы полимера. Содержание низкомолекулярного соединения в готовом полимере, как правило, не превышает 1-2%, влажность составляет 0,05-0,1%.

     Полигексаметиленадипинамид нет необходимости подвергать демономеризации благодаря необратимому характеру поликонденсации при его синтезе. Расплав пригоден для непосредственной переработки в волокно, а полимерный гранулят предварительно сушится.

     Для получения волокнообразующих полиамидов применяют высокоавтоматизированные непрерывные технологические процессы. При этом в производстве найлона-6 используют технологические схемы как с получением гранулята, так и непрерывные, включающие непосредственную передачу получаемого расплава полимера на формование волокна, в производстве найлона-6,6-чаще непрерывные схемы.

     В производстве полиамидных волокон важное значение имеет качество исходного полимера: 1) линейность молекулярной структуры; 2) однородность его физико-химических свойств; 3) отсутствие механических включений и гель-частиц. Это достигается оптимизацией процессов тепло- и массообмена в реакторах, ликвидацией в них застойных зон и максимальным сокращением времени синтеза, фильтрацией расплава полимера перед формовочной машиной. Обычно для производства волокон используют линейные алифатические. полиамиды молекулярной массой. (18-35)· 103.

     Алифатические полиамидные волокна обычно формуют  из расплавов. В случае использования гранулята полимер расплавляют в экструдерах при 260-3000C в атмосфере инертного газа; расплав фильтруют и дозирующими насосами подают в фильерный комплект, где он еще раз фильтруется и продавливается через отверстия фильер. При формовании волокон непосредственно из расплава последний к дозирующим насосам подают с помощью шнековых или шестеренчатых насосов. Один прядильный блок может состоять из 1-16 фильер.

     Существенное влияние на свойства волокон оказывает форма (профиль) отверстия фильеры. Если отверстие не круглое (звездочка с различным колличеством лучей, восьмиугольник), то получают профилированные волокна и нити, имеющие иные оптические и в ряде случаев механические свойства. Известны также бикомпонентные полиамидные волокна типа «бок о бок» или «ядро – оболочка», формуемые, например, из полиамида и полиэфира, а чаще из двух полиамидов, различающихся молекулярными массами или др. физико-химическими свойствами. В этом случае используют, фильеры с двумя отверстиями, в которые подаются два разных вида расплавов. Выходя из фильеры, струйки жидкого полимера охлаждаются холодным воздухом в специальных прядильных шахтах (формование по сухому способу). С целью регулирования вязкости струи и формирования необходимой структуры полимера в волокне в некоторых случаях в прядильную шахту непосредственно под фильеру подают перегретый водяной пар или нагретый инертный газ. При охлаждении струек расплава происходит начальная ориентация макромолекул и структурообразование. Вследствие разности скоростей вытекания расплава из отверстия фильеры и приемки нити на первый прядильный диск происходит фильерная вытяжка в 30-60 раз. После выхода из шахты на сформованную нить наносится заданное кол-во влаги и ПАВ для придания необходимых фрикционных свойств, компактности и предотвращения электризации .

     Затем сформованная нить со скоростью 8-100 м/с поступает на намоточное устройство. С увеличением скорости намотки и, следовательно, с повышением напряжения в нити возрастает степень ее ориентац. вытягивания при формовании (Ориентированное состояние полимеров). В зависимости от принятой схемы технологического процесса и оборудования используют различные скорости намотки, которые определяют свойства получаемой нити и дальнейшую технологию ее текстильной обработки.

     При скоростях намотки 8-33 м/с (классическая схема) получают неориентированную или слабоориентированную нить, которую для придания необходимых текстильных свойств подвергают ориентированному вытягиванию в 3-5 раз на крутильно - или намоточно-вытяжных машинах. T. обр. получают как текстильные, так и технические нити. При скоростях 33-85 м/с получают частично ориентированную, или предориентированную, нить, которую можно использовать как текстильный материал или подвергать дополнительному вытягиванию и дальнейшим текстильным обработкам. При скоростях 85-100м/с получают полностью ориентированную нить (готовый текстильный материал). Относительные удлинения нитей, полученных в трех указанных интервалах скоростей намотки, составляют 300-500%, 50-80% и 30-40% соответственно. Два последних способа относятся к высокоскоростному формованию, применяемому, для получения текстильных нитей.

     Во  всех случаях формуемая нить транспортируется с помощью двух прядильных дисков и наматывается на цилиндрический патрон. Намоточные устройства как по классической схеме, так и по способам высокоскоростного формования рассчитаны на одновременную приемку 2-16 нитей.

     При получении технических нитей используется также способ совмещенного формования и вытягивания. Приемное устройство в этом случае включает кроме намоточного механизма еще 3-4 пары вытяжных дисков, за счет разницы скоростей вращения которых происходит вытягивание нити в 4-6 раз. Относительное удлинение получаемой нити 25-30%, скорость намотки 40-55 м/с.

     Способы совмещенного и высокоскоростного  формований по сравнению с классическим имеют лучшие технико-экономические показатели, обеспечивают более высокую равномерность свойств нити и пригодны для роботизации.

     Неориентированные и слабоориентированные нити текстильного ассортимента (линейная плотность 1,5-29 текс) подвергают ориентац. вытягиванию, в одну стадию. Нити технического назначения, формуемые из более высоко - молекулярных полиамидов (линейная плотность 93-210 текс), вытягивают в 4,5-5,5 раза в две стадии: для снижения напряжения в нити и достижения высокой равномерности основную часть вытягивания (75%) проводят при нагревании нити до 150-190 оС (горячая вытяжка) [3].

     После ориентации вытягивания в зависимости от назначения технические нити сразу перематывают на товарную паковку (бобина, шпуля) или подвергают предварительно кручению, а нити для шинного корда - кручению и трощению (соединению нескольких нитей в одну). Текстильные нити перематывают на товарную паковку, подвергают кручению (200-1200 кручений на 1 м), трощению, текстурированию, термофиксации и (или) шлихтованию (обработке эмульсиями или растворами различных веществ с целью слабого склеивания элементарных нитей). Термофиксацию с целью снижения в 3-4 раза тепловой усадки нитей осуществляют чаще всего горячим воздухом или водяным паром и в редких случаях горячей водой (900C). Вместо экономически невыгодной операции кручения можно использовать пневмосоединение (воздействие на нити сжатого воздуха с образованием местного перепутывания отдельных элементарных нитей). Частично ориентированные текстильные нити подвергают ориентац. вытягиванию, как правило, только при текстури-ровании.

     Крашение полиамидных волокон обычно осуществляют в массе(краситель вводят в расплав полимера перед формованием волокна), или в готовых изделиях дисперсными красителями и их водорастворимыми производными, кислотными красителями и органическими пигментами.

     Виды  выпускаемых полиамидных волокон мононити, комплексные нити с числом элементарных нитей 3-400, для текстильной переработки и техн. целей, текстурированые. нити, нити для ковров и мебельных тканей (текстурированые. комплексные нити, линейная плотность 80-400 текс), штапельное волокно, нетканые материалы.

     Свойства. Физико - химические свойства полиамидных волокон зависят от химической природы и молекулярной массы исходного полиамида, структурных особенностей волокна. С повышением молекулярной массы полиамида улучшаются прочность, модуль деформации при растяжении, уста-лостные характеристики, физоко - механические показатели волокон.

     Полиамидные волокна характеризуются высокой прочностью при растяжении, устойчивостью к знакопеременным деформациям, высоким сопротивлением к ударным нагрузкам и истиранию. Недостатки полиамидных волокон из алифатических. полиамидов - сравнительно низкая гигроскопичность, что является причиной их высокой электризуемости, относительно низкий модуль деформации при растяжении и низкие тепло -, термо - и светостойкость. Для повышения устойчивости полиамидных волокон к окислению при термических и фотохимических воздействиях в исходный полимер можно вводить различные антиоксиданты (ароматические амины и фенолы, бензимидазолы, органические и неорганические соли переходных металлов, комплексные соединения, содержащие Cu). Область рабочих температур для волокон из алифатических полиамидов составляет 80-1500C.

     Полиамидные волокна растворяются в феноле, крезолах, ксилоле, трихлорэтане, хлороформе, бензиловом спирте, нитробензоле, ДМСО, ди-метилацетамиде, ДМФА (особенно в сочетании с LiCl), в некоторых фторпроизводных спиртов и карбоновых кислот. Не растворяются в алифатических спиртах, ацетоне, CCl4, три-хлорэтилене, углеводородах, простых и сложных эфирах. полиамидные волокна неустойчивы в концентрированных кислотах, особенно минеральных. Щелочи умеренных концентраций не оказывают заметного воздействия на полиамидные волокна, однако с повышением температуры и концентрации деструктирующее воздействие щелочей возрастает. Концентрация раствора NaOH, вызывающего существ, деструкцию волокна, составляет 10-12%. Прочность волокон мало снижается после пребывания в 10-20%-ных растворах Na2CO3 и в растворах аммиака любой концентрации при комнатной температуре [3].

Информация о работе Контрольная работа по технологии товаров