Автор работы: Пользователь скрыл имя, 23 Января 2011 в 10:40, курсовая работа
К группе каротиноидов относят вещества, окрашенные в желтый или оранжевый цвет. Наиболее известные представители каротиноидов — каротины — пигменты, дающие специфическую окраску корням моркови, а также лютеин — желтый пигмент, содержащийся наряду с каротинами в зеленых частях растений. Окраска семян желтой кукурузы зависит от присутствующих в них каротинов и каротиноидов, получивших название цеаксантина и криптоксантина. Окраска плодов томата обусловлена каротиноидом ликопином.
Введение 3
1. Обзор литературы 3
1.1. Химическая природа, свойства и виды каротиноидов 4
1.1.1 Физико-химические свойства каротиноидов 4
1.1.2 Химическая природа и виды каротиноидов 5
1.2 Содержание каротиноидов в плодах и овощах 10
1.3 Роль каротиноидов для организма человека 16
1.3.1 Значение и функции 16
1.3.2 Нормы потребления 18
1.3.3 Усвоение каротиноидов организмом человека 19
1.4 Методы количественного определения каротиноидов 20
1.5 Использование каротиноидов 23
Заключение 25
Список использованных источников
Особенно чувствительными разновидностями хроматографии являются называемые тонкослойная и газовая хроматографии, которые находят все бол широкое применение в биохимии, биоорганической химии и пищевой химии.
Газовая хроматография в настоящее время — наиболее точный и быстрый метод анализа липидов. [13]
Методы извлечения каротиноидов. Традиционные методы извлечения каротиноидов из природных объектов состоят в гомогенизировании биомассы при охлаждении (процесс проводят обычно в присутствии антиоксидантов в темноте), извлечении пигментов полярными растворителями, например ацетоном или метанолом. Далее каротиноиды переводят в неполярные растворители — гексан или петролейный эфир. Индивидуальные пигменты получают путем хроматографирования в тонком слое адсорбента (силикагель, алюминий). При использовании последнего сорбента разделение каротиноидов целесообразнее проводить в системе растворителей, содержащей различное количество гексана и ацетона. При разделении ксантофиллов перед тонкослойной хроматографией на силикагеле проводят предварительный щелочной метанолиз. Если каротиноиды связаны с белками, то для их извлечения используют детергенты, например тритон Х-100 (2 %) или додецилсульфат натрия (1%).
Первоначальную информацию о строении выделенного каротиноида дает исследование спектров поглощения пигмента в видимой области. Эти данные наряду с принятыми химическими методами исследования каротиноидов (озонолиз, восстановление NaBH4 и др.) позволяют составить представление о возможной структуре пигмента. Далее определяют сравнительную полярность изучаемого пигмента в разных хроматографических системах.
Масс-спектрометрия. Масс-спектрометрия используется для установления молекулярной массы каротиноида и особенностей строения. Информацию о наличии определенных функциональных групп в пигменте могут дать ИК- и ЯМР-спектры. Стереохимия каротиноида является конечным этапом его изучения. Наиболее полные данные о стереохимии каротиноида можно получить, используя спектры кругового дихроизма и низкотемпературные спектры поглощения (при температуре жидкого азота). Окончательное заключение о строении изучаемого каротиноида дают рентгеноструктурный анализ и тотальный синтез полиена. Следует отметить, что все перечисленные выше анализы могут быть проведены с небольшим количеством образца (около 10 — 20 мг), что в значительной степени содействовало развитию в последние годы химии каротиноидов. [9, 23]
Уже в течение многих лет каротиноиды широко применяются в сельском хозяйстве, медицине и пищевой промышленности. Их присутствие во многих природных продуктах делает их идеально пригодными для этой цели.
Каротиноиды получают с помощью химического синтеза и путем выделения из природных источников — растений и микроорганизмов. Химическим путем получают β-каротин, витамин А, β-апо-8-каротиналь, этиловый эфир β-апо-8-каротиновой кислоты, кантоксантин и ряд других каротиноидов, синтез которых осуществляется в заводских масштабах. Традиционными источниками получения каротиноидов служат также некоторые растения - морковь, тыква, трава, шиповник, облепиха и др. Наряду с этим все шире в тех же целях используют мицелиальные грибы и дрожжи. Как продуценты каротиноидов представляют также интерес бактерии и водоросли. [20]
β-Каротин используют главным образом в пищевой промышленности, а также при изготовлении лекарств и косметических средств. β-Каротин и ликопин применяют как пигментные вещества и красители при изготовлении таких пищевых продуктов, как колбасы и ветчинные изделия, сливочное масло. Как краситель используют также β-апо-8-каротиналь, придающий оранжевую окраску многим кондитерским изделиям, сырам и овощным пастам. [18]
В пищевые жиры, особенно в сливочное масло и маргарин, добавляют β-Каротин, благодаря чему организм получает дополнительное количество необходимого для него витамина А, а масло - более привлекательный цвет. Масло нагревают до 30'С и добавляют вытяжку из моркови или β-каротин, который при такой температуре хорошо растворяется в масле. Водорастворимые или по крайней мере диспергируемые в воде производные β-каротина, кантаксантин и апокаротиноиды, применяются для окрашивания напитков и других пищевых продуктов. В Италии существует давняя традиция добавлять каротиноиды в макаронные изделия. β-Каротин и β-апо-8-каротиналь добавляют также в сыры и овощные пасты. Эти же каротиноиды используют для окраски яичного желтка (β-апо-8-каротиналь добавляют в пищевой рацион кур). [2]
Часто каротиноиды-красители используют в сочетании с аскорбиновой кислотой, что обеспечивает большую стабильность пигментов. Для лучшей сохранности каротиноидов при использовании их в качестве красителей применяют также особые препаративные формы пигментов. Каротиноиды растворяют в маслах или готовят вододисперсные формы: в такой форме пигменты заключают в микрокапсулы (наиболее удобная форма сохранения каротиноидов). Велико значение каротиноидов, в частности ликопина, при изготовлении колбас и ветчинных изделий, где,они могут заменить нитрит натрия. Как краситель используют также β-апо-8-каротиналь, придающий оранжевую окраску леденцам, пищевым пастам, кексам и другим кондитерским изделиям. [15]
В медицине каротиноиды используются главным образом для профилактики или лечения авитаминоза А. В этих случаях рекомендуется пищевой рацион, богатый каротиноидами, или специальные препараты. Вместе с тем, как недавно показано, при некоторых кожных заболеваниях, которые обостряются под действием солнечного излучения, каротиноиды играют защитную роль. В частности, большие дозы β-каротина значительно смягчают симптомы эритропоэтической Порфирии. Для этой болезни характерно нарушение метаболизма порфиринов, в результате чего они накапливаются в организме и начинают играть роль фотосенсибилизаторов. У таких больных под влиянием солнечного света появляется зуд, жжение и отечность. В настоящее время рассматривается также возможность использования каротиноидов. Кроме того, установлено, что каротиноиды оказывают терапевтический эффект на развитие рака кожи, индуцируемого УФ-излучением или диметилбензантраценном. [2]
Каротиноиды представляют собой классический пример группы природных пигментов. Все члены этой группы обладают очень близкой структурой, основанной на сопряженном полиеновом хромофоре, который и обуславливает их светопоглощающие свойства. Они дают возможность наблюдать четкую корреляцию между максимумом поглощения и длиной хромофора. Каротиноиды чрезвычайно широко распространены у живых организмов и принимают участие во всех фотофункциях, обычно связанных с природными пигментами.
Использование каротиноидов в качестве пищевых добавок, красителей и провитаминов А уже происходит в большиз количествах и постоянно расширяется. Это связано с увеличением спроса на природные красители, которые часто предпочитают синтетическим красящим веществам, а также с налаженным промышленным производством каротиноидов. Если число каротиноидов, которые могут быть использованы, и особенно диапазон красок, который может быть получен, увеличаться, то применение каротиноидов станет еще более широким.
Несомненный интерес представляют данные о том, что β-каротин оказывает терапевтический эффект на развитие рака кожи, индуцируемого УФ-излучением или диметилбензантраценом. Установлено, что и другой каротиноид — кантаксантин, а также полиен фитоин обладают антираковой активностью в отношении рака кожи, индуцированного УФ-излучением.
Таким образом, изучение каротиноидов весьма перспективно и позволяет широко использовать эти соединения в промышленности, медицине и сельском хозяйстве.
1. Карнаухов, В. Н. Биологические функции каротиноидов/ В. Н. Карнаухов. – М.: Наука, 1988. – 240 с.
2. Бриттон Г. Биохимия природных пигментов: пер. с англ. / Г. Бриттон. – М.: Мир, 1986. – 422 с.
3. Гудвин Т. Сравнительная биохимия каротиноидов: пер. с англ. Ф. В. Церевитина/ Т. Гудвин. – М.: Мир, 1974. – 541 с.
4. Гудвин Т. Введение в биохимию растений: Пер. с англ. под ред. В.Л.Кретовича/ Т. Гудвин, Э. Мерсер. – М., 1986. – 630 с.
5. Дмитровский А. А. Экспериментальная витаминология/ А. А. Дмитровский, Островская Ю. М. - Минск.: Наука и техника, 1979. – 233 с.
6. Душейко А. А. Витамин А / А. А. Душейко. – Киев: Наукова Думка, 1988. – 512 с.
7. Конъ И. Я. Биохимические механизмы действия витамина А / И. Я. Конь. - М.: Ин-т питания АМН СССР, 1987. – 216 с.
8. Коротилова А. И. Витамины / А. И. Коротилова, Е. П. Глушанков. – СПб.: 1976. – 273 с.
9. Кретович В. Л. Биохимия растений: Учеб. – 2-е изд., перераб. и доп.; для биол. спец. ун-тов / В. Л. Кретович. – М.: Высш. шк., 1986. – 503 с.
10. Метлицкий Л. В. Основы биохимии плодов и овощей / Л. В. Метлицкий.– М.: 1976. – 203 с.
11. Овчаров К. Е. Витамины растений / К. Е. Овчаров.– М.: 1969. – 492 с.
12. Кротов С. М. Популярная медицинская энциклопедия: 4-е издание/ С. М. Кротов, А. Г. Шлепаков - Ульяновск.: “Книгочей”, 1997. – 165 с.
13. Аркадьева З. А. Промышленная микробиология: Учеб.пособие для вузов по спец. «Микробиология» и «Биология» / З. А. Аркадьева, А. М. Безбородов, И. Н. Блохина [и др.]. – М.: Высш. шк., 1989. – 688 с.
14. Савинов Б.Г. Каротин (провитамин А) и получение его препаратов. / Б. Г. Савинов. - Киев: Наукова Думка, 1978. – 264 с.
15. Семенов В. Ф. Пигменты пищевых производств (меланоидины)/ В. Ф. Селеменов, О. Б. Руданов, Г. В. Славянская, Н. В. Дроздова. –М.: Дели принт, 2008. – 246 с.
16. Сисакян Н.М. Биохимия и физиология витаминов/ Н. М. Сисакян. – М.: Колос, 1953. – 254 с.
17. Скорикова Ю. Г. Полифенолы плодов и ягод и формирование цвета продуктов: учебник/ Ю. Г. Скорикова. – М.: Пищ. пром-ть. – 1973. – 230 с.
18. Слепнева А.С. Товароведение плодоовощных, зерномучных, кондитерских и вкусовых товаров / А.С. Слепнева, А.Н. Кудяш, П.Ф.Пономарев. –2-е изд., переработанное. – М.: Экономика, 2007. –243 с.
19. Стайлер Л.К. Биохимия/ Л. К. Стайлер.– М.: Мир., 1985. – 476 с.
20. Гончарова В. Н. Товароведение пищевых продуктов/ В. Н. Гончарова, Е. Я. Голощапова. - М.: Экономика, 1990 г. – 263 с.
21. Третьяков Н.Н. Физиология и биохимия сельскохозяйственных растений/ Н. Н. Третьяков, Е. И. Кошкин, Н. М. Макрушин [и др.]. - М.: Колос, 2000. – 180 с.
22. Химический состав и энергетическая ценность пищевых продуктов: справочник Мак Канса и Уиддоусона/ пер. с англ. под общ. ред. А.К.Батурина. – СПб.: Профессия, 2006. – 416 с.
23. Энциклопедический словарь - М.: Большая советская энциклопедия, 1955. – 864с.
24. Яковлева Н.Б. Химическая природа нужных для жизни витаминов/ Н. Б. Яковлева. - М.: Просвещение, 2006. – 120 с.
Информация о работе Характеристика каротиноидов плодов и овощей