Станок фрезерный вертикальный JVM-836 TS

Автор работы: Пользователь скрыл имя, 11 Декабря 2014 в 20:08, контрольная работа

Описание работы

Станок фрезерный вертикальный JVM-836 TS является универсальным фрезерным станком за счет возможности поворота фрезерной головы на 90 градусов в обе стороны. Станок JVM-836 TS является самым компактным промышленным фрезерным станком линейки производителя Jet. Вес станка составляет 730кг, габариты – 1,4х1,3х1,9м. Тем не менее станок JVM-836 TS полностью автоматизирован: шпиндель станка имеет автоматическую подачу, стола станка имеет механический привод по оси X (продольное перемещение), автономная смазка узлов станка и подача СОЖ, реверс шпинделя и механический тормоз.

Содержание работы

1.
Назначение станка.
3
2.
Общий вид станка и основные элементы его кинематической схемы.

4
3.
Особенности конструкции и комплектность станка. Дополнительная оснастка.

5
4.
Технические характеристики.
7

Ответы на контрольные вопросы.
8

Список используемой литературы.

Файлы: 1 файл

контрольная работа - копия.docx

— 193.04 Кб (Скачать файл)

 

Содержание

1.

Назначение станка.

3

2.

Общий вид станка и основные элементы его кинематической схемы.

 

4

3.

Особенности конструкции и комплектность станка. Дополнительная оснастка.

 

5

4.

Технические характеристики.

7

 

Ответы на контрольные вопросы.

8

 

Список используемой литературы.

24


 

 

 

  1. Назначение станка.

Вертикально фрезерный станок JVM-836 TS предназначен для производства операций фрезерования и растачивания разных деталей из цветных и черных металлов и их сплавов в режиме серийного и мелкосерийного производства.
    1. Может использоваться на предприятиях, выпускающих металлоизделия небольших размеров, ремонтных мастерских, НИИ, индивидуального потребителя, а также для оснащения классов школьных мастерских.  
      Общий вид станка и основные элементы его кинематической схемы.
Станок фрезерный вертикальный JVM-836 TS является универсальным фрезерным станком за счет возможности поворота фрезерной головы на 90 градусов в обе стороны. Станок JVM-836 TS является самым компактным промышленным фрезерным станком линейки производителя Jet. Вес станка составляет 730кг, габариты – 1,4х1,3х1,9м. Тем не менее станок JVM-836 TS полностью автоматизирован: шпиндель станка имеет автоматическую подачу, стола станка имеет механический привод по оси X (продольное перемещение), автономная смазка узлов станка и подача СОЖ, реверс шпинделя и механический тормоз.
Вертикально-фрезерный станок JVM-836 TS (1 — фреза, 2 — шпиндель, 3 — хобот, 4 — станина, 5 — стол, 6 — салазки, 7 — консоль, 8 — фундаментная плита, 9 - панель запуска шпинделя, 10 - регулировка передач шпинделя, 11 - регулировка скорости вращения шпинделя, 12 - Подача СОЖ, 13 - Продольное перемещение стола, 14,15,16 - ускоренные перемещения стола, 17 - поперечное перемещение стола)

 

    1. Особенности конструкции и комплектность станка. Дополнительная оснастка.
Вертикально-фрезерный станок JET JVM-836 TS - особенности конструкции:
    • большой ход пиноли для сверления;
    • упорные подшипники шпинделя гарантируют стабильность при фрезеровании;
    • гарантированное биение конуса шпинделя 0,01 мм;
    • возможность поворота головки влево и вправо;
    • возможность правого и левого вращения шпинделя;
    • шлифованные направляющие каретки с регулируемыми клиновидными планками;
    • механический тормоз шпинделя вертикально-фрезерного станка JVM-836 TS;
    • централизованная система смазки фрезерного стола;
    • встроенная система подвода СОЖ.
Вертикально-фрезерный станок JET JVM-836 TS - стандартная комплектация:
    • система подвода СОЖ;
    • автоматическая подача по оси Х;
    • защитный экран с концевым выключателем;
    • лампа местного освещения;
    • инструмент для обслуживания
    • ящик для инструмента;
    • поддон для сбора стружки;
    • инструкция по эксплуатации;
    • сертификат точности;
    • упаковочный лист.

 

 

Дополнительные принадлежности:
 

Описание

385021

Поворотные машинные тиски 150х40х0-140 мм

464816

Поворотный стол с круглой планшайбой 200 мм/МК-3

50000101

Автоматическая система подачи ось-Х

50000102

Патрон шпинделя ISO30-MK2

50000103

Патрон шпинделя ISO30-MK3

50000104

Патрон шпинделя ISO30-B16

50000105

Патрон шпинделя ISO30-ER32 + комплект из 11 цанг (4-20) мм

50000106

Патрон шпинделя ISO30-d22 фрезерная оправка

50000107

Автоматическая подача по оси Z

50000170

Комплект зажимных инструментов для 16-мм Т-образного паза

VR1001061

CS-8 Поворотный стол с 3х  кулачковым патроном 

VR1001024

TS-3 Задняя бабка для CS-8

VR1001010

VU-300 Универсальный наклонный  поворотый стол Ø300 мм

VR3303079

16H Сверлильный патрон 1-16 мм/В16 под ключ 


 

 

  1. Технические характеристики
Технические характеристики вертикально-фрезерного станка JVM-836 TS:

Наименование параметра

Величина

Максимальный диаметр сверления

Ø 32 мм, M20

Максимальный диаметр торцевой фрезы

Ø 100 мм

Максимальный диаметр концевой фрезы

Ø 20 мм

Конус шпинделя

ISO 30 (DIN 2080)

Диаметр шпинделя

85 мм

Частота вращения шпинделя: 16

65 - 4550 оборотов/минуту

Ход пиноли шпинделя

127 мм

Диапазон поворота головки

90° влево/вправо

Расстояние от шпинделя до стола

50 - 356 мм

Минимальное расстояние шпинделя до стойки

133 мм

Максимальное расстояние шпинделя от до стойки

400 мм

Размеры стола

905 x 200 мм

Ход стола по оси X x Y

640 x 240 мм

Скорость подачи по оси X

0 - 900 мм/минуту

Т-образные пазы: 3

16 мм

Автоматическая подача пиноли

0,04 / 0,08 / 0,16 мм/оборот

Выходная мощность

2,3 кВт / S1 100%

Входная мощность

4,2 кВт / S6 40%

Масса

730 кг


 

 

 

Ответы на контрольные вопросы.
  1. История развития станкостроения в России.
В развитых промышленных странах объем продукции металлообработки составляет около 30% общего производства продукции. Успех развития того или иного производства в значительной степени зависит от эффективного использования металлорежущих станков (МРС). Анализ времени нахождения заготовки в цехе в условиях, например, мелкосерийного производства, показывает, что 5% времени она находится на станке и только 1,5% уходит на съем металла. Если учесть, что 70% всего количества деталей изготавливают в условиях единичного и серийного производства партиями до 50 штук, то очевидно, что проблема автоматизации этих производств является основной задачей развития машиностроения в целом.
Отечественное станкостроение за свои более чем восьмидесяти лет существования прошло несколько исторических периодов развития.
Становление станкостроения заложено в трудах академика Дикушина В.И., проф. Ачеркана Н.С., проф. Владзиевского А.П., проф. Решетова Д.Н., проф. Грановского Г.И., проф. Головина Г.М., проф. Богословского Б.Л. и целого ряда технологов, конструкторов, экономистов, рабочих. Благодаря работам перечисленных авторов и огромной армии производственников разных квалификаций и рангов, внесен существенный вклад в научные основы учения о конструирование и расчете станков, а так-же о принципах формирования типажа металлорежущих станков (МРС).
Дальнейшее конструктивное совершенствование МРС и повышение требований к их эксплуатационным свойствам привело к созданию новых теоретических направлений и школ, которые были изложены в трудах профессоров Пуша В.Э., Кудинова В.А., Проникова А.С., Бушуева В.В., Каминской В.В.. Левиной З.М., Хомякова В.С., Аверьянова О.И. и др.
В период становления отечественного станкостроения в 30-х годах решалась задача создания станков различных технологических групп с позиции максимально возможного удовлетворения потребности различных отраслей народного хозяйства страны. В основном это были сравнительно простые станки универсального назначения с ручным управлением (РУ). Этот период характеризовался специализацией заводов по технологическому признаку, среди которых выделялись заводы – гиганты, например, такие как: Московский завод “Красный пролетарий”, Средневолжский станкозавод, Краснодарский станкозавод им. Седина (все изготавливали станки токарной группы), Горьковский и Дмитровский заводы по производству станков фрезерной группы, Ленинградский станкозавод им. Я.М. Свердлова, заводы Минска и на Коломенском станкозаводе по производству расточных МРС, Одесский и Ивановский станкозаводы по производству сверлильных станков и т. д. Этот период также отмечен и организацией заводов по производству прецизионных станков. В частности такие заводы работали в Москве, Одессе, Куйбышеве, а несколько позже в Вильнюсе, Ереване и других городах. Объемы поставок станков отмеченных выше заводов определялись только их производственными возможностями, и поэтому формирование структуры парка МРС происходило как бы стихийно.
Военный (1941-1945 г.) и послевоенный периоды, вплоть до 60-х годов, характеризовался более организованным выпуском металлорежущего оборудования, поскольку правительством страны была поставлена цель значительного выпуска продукции оборонного назначения и восстановления народного хозяйства страны после войны. Для этих целей создавались станки высокопроизводительные и сравнительно недорогие, поскольку они изготавливались на основе унифицированных узлов и агрегатов. Эти станки по своему назначению относились к специальным станкам, поскольку они могут производить только одну операцию и только на конкретных деталях. В настоящее время подобные станки и автоматические линии продолжают функционировать на многих заводах автомобильной, тракторной, сельскохозяйственной и других отраслях. Для решения практических задач в этот период времени было создано самостоятельное научное направление по проблеме создания и эксплуатации металлорежущего автоматизированного оборудования для условий массового производства (работы проф. Да-щенко А.И., Волчкевича В.И., Черпакова Б.И., Белова В.С., доц. Брона Л.С. и др.).
В период 60-80 годов предпринимается попытка изменить структуру парка МРС, сделать ее более приемлемую для решения задач, которые каждые пять лет находили отражения в различных постановления в виде основных показателях повышения производительности труда, снижения трудоемкости изготовления изделий, повышения точности обработки и т.д. Контрольные цифры выпуска МРС по объему и видам оборудования строились на основе обширной информации об обрабатываемых деталях, выраженных через суммарную трудоемкость их изготовления. Однако и при такой более совершенной методике расчета структуры МРС, удельный вес автоматизированных станков и МРС с ЧПУ был не достаточным, поскольку ряд вопросов, решение которых во многом определяло технический уровень МРС, не находили необходимой финансовой поддержки со стороны органов власти.
Качественно новые свойства МРС приобрели в сочетании с системами числового программного управления (ЧПУ). Существенно расширились технологические возможности таких станков, появились предпосылки оперативного вмешательства в процесс механической обработки деталей и обеспечения наиболее рациональной организации труда в целом. Наряду с существовавшим ранее традиционным принципом проектирования станков потребовался более серьезный учет целого ряда факторов связанных со спецификой внедрения ЧПУ, технологии обработки и организации инструментального хозяйства, технико-экономического анализа применения станков с ЧПУ. Эти и другие подобные вопросы нашли должное отражение в трудах Васильева В.С., Маталина А.А Ю.Д., Лещенко В.А., Соломенцева Ю.М., Враговым Ю.Д. были предложены основы теории компоновок МРС как первый шаг к комплексной оценки качества компоновок станка на предпроектной стадии его создания.
На протяжении многих лет в России был проведен целый комплекс работ, связанных с решением задач по созданию высокопроизводительных и прецизионных МРС. Причем эти работы велись не только в области исследования станков, но и в области создания соответствующих производственных мощностей, удовлетворяющих условиям изготовления точных деталей, узлов и станков, а также обеспечения их соответствующими комплектующими изделиями.
Проблема обеспечения точности обработки в пределах нескольких микрон достигалась применением узлов, деталей и элементов точных и особо точных исполнений. Точность перемещения исполнительных органов станка (каретки, салазки, столы и т.п.) обеспечивалась за счет применения соответствующих систем отсчета координат и со-ответствующих конструкций направляющих. За счет использование специальных технических средств, обеспечивалось снижающее трения в сопряженных стыках МРС.

Информация о работе Станок фрезерный вертикальный JVM-836 TS