Процесс фрезерования

Автор работы: Пользователь скрыл имя, 11 Ноября 2009 в 16:23, Не определен

Описание работы

В нашей стране работают тысячи квалифицированных фрезеровщиков. Многие из них являются новаторами производства. Они не только имеют большой опыт и практические знания, позволяющие полностью использовать технологические возможности станка и инструмента, но и изобретают и совершенствуют конструкции фрез, вспомогательный инструмент и приспособления.



Файлы: 1 файл

ФРЕЗЕРОВКА.doc

— 177.79 Кб (Скачать файл)

ВВЕДЕНИЕ 

      В нашей стране работают тысячи квалифицированных фрезеровщиков. Многие из них являются новаторами производства. Они не только имеют большой опыт и практические знания, позволяющие полностью использовать технологические возможности станка и инструмента, но и изобретают и совершенствуют конструкции фрез, вспомогательный инструмент и приспособления.

      Инструмент и приспособления новаторов постоянно экспонируются на Выставке достижений народного хозяйства, получают распространение на многих предприятиях. Каждый новатор-фрезеровщик передает свой опыт, знания, мастерство молодежи и этим способствует решению общей задачи повышения эффективности труда.  

ПРОЦЕСС ФРЕЗЕРОВАНИЯ

      Основные понятия и определения

      Различают два основных вида фрезерования: тангенциальное, при котором режущие лезвия вращающегося цилиндрического инструмента образуют обработанную поверхность параллельно оси его вращения, и радиальное, когда лезвия вращающегося инструмента образуют обработанную поверхность перпендикулярно к оси его вращения.

      Скоростью резания v (м/мин) называется окружная скорость (м/мин) наиболее удаленных от оси вращения инструмента точек режущего лезвия. Она определяется по формуле

,

где D -- диаметр окружности вращения режущего лезвия (в частном случае -- диаметр фрезы), мм; n -- частота вращения инструмента, об/мин. Фрезеровщику чаще приходится решать обратную задачу -- определять потребную частоту вращения (об/мин) фрезы заданного диаметра в зависимости от принятой скорости резания

.

      Подачей s называется путь, проходимый заготовкой относительно фрезы (или наоборот) в единицу времени. Различают три вида подач: на зуб, на оборот и минутную. Подача на зуб (мм/зуб) -- перемещение заготовки за время поворота фрезы на один зуб. Подачей на оборот (мм/об) является перемещение заготовки за время поворота фрезы на один оборот. Минутная подача (мм/мин) -- перемещение заготовки за 1 мин. Зависимость указанных подач выражается формулами:

;

.

      Глубина резания t -- толщина слоя материала заготовки (мм), срезаемого за один рабочий ход.

      Шириной фрезерования B называется ширина (мм) поверхности заготовки, обрабатываемой за один рабочий ход, измеренная в направлении, перпендикулярном к направлению подачи (движению заготовки).

      Сечение стружки (среза), снимаемой одним зубом фрезы, описывается двумя дугами контакта лезвия фрезы с поверхностью лезвия. Оно имеет форму запятой. Расстояние между этими дугами переменное -- оно изменяется от значения, близкого к нулю, до некоторого максимума, близкого к . Это расстояние (мм) принято называть толщиной срезаемого слоя (стружки) а.

      Другими элементами, характеризующими срезаемый слой, являются: его ширина b (мм), которая представляет собой длину соприкосновения зуба фрезы с заготовкой и измеряется вдоль главного лезвия, в частном случае, при фрезеровании прямозубой цилиндрической фрезой b = B; площадь поперечного сечения слоя, срезаемого одним зубом, f = ab (мм2); суммарная площадь поперечного сечения среза F (мм2), снимаемого всеми зубьями фрезы, находящимися в данный момент в контакте с заготовкой.

      Для определения площади поперечного сечения среза при цилиндрическом фрезеровании необходимо знать следующие величины: -- угол контакта фрезы -- центральный угол, соответствующий дуге соприкосновения окружности фрезы с заготовкой, измеряемый в плоскости, перпендикулярной к оси фрезы; -- центральный угол между двумя соседними зубьями фрезы,

.

      Число зубьев, одновременно находящихся в работе (контакте с материалом),

.

      Угол контакта находится из треугольник АОБ

.

      Угол контакта при торцевом фрезеровании

.

      Максимальная толщина срезаемого материала

.

      Суммарное (среднее) значение площади поперечного сечения среза определяется в зависимости от числа зубьев, одновременно находящихся в контакте.

.

или от элементов резания

.

Значение используется для определения силы резания при фрезеровании.

      Силы резания и мощность при фрезеровании

      Силы резания. При фрезеровании каждый зуб фрезы преодолевает сопротивление резанию со стороны материала заготовки и силы трения, действующие на поверхностях зубьев фрезы. Обычно в контакте с заготовкой находится не один зуб, и поэтому фреза преодолевает некоторую суммарную силу резания, складывающуюся из сил, действующих на эти зубья. Схема действия сил резания при фрезеровании зависит от принятого способа фрезерования и типа фрезы.

      Как тангенциальное (например, цилиндрической фрезой), так и радиальное (например, торцевой фрезой) фрезерование может осуществляться двумя способами: против подачи, так называемое встречное фрезерование, когда направление подачи противоположно направлению вращения фрезы, и фрезерование по подаче -- попутное фрезерование, когда направление подачи и вращение фрезы совпадают.

      При встречном фрезеровании нагрузка на зуб возрастает от нуля до максимума; при этом зубья фрезы, действуя на заготовку, стремятся «оторвать» ее от стола станка или приспособления, в котором она закреплена. Такое направление силы вызывает в ряде случаев (при больших припусках на обработку) упругие деформации в системе СПИД, что, в свою очередь, приводит к вибрациям и увеличению шероховатости обработанной поверхности. Зубья фрез при этом интенсивно изнашиваются, так как в момент врезания в заготовку их задние поверхности трутся об упрочненную, уже обработанную поверхность, преодолевая значительную силу трения.

      Преимуществом встречного фрезерования перед попутным является работа зубьев фрезы из-под корки. Режущие лезвия в момент входа в зону хрупкого металла повышенной твердости (корки) прекращают контакт своей задней поверхности с заготовкой в точке Б, так как происходит скол стружки.

      При попутном фрезеровании зуб врезается в материал в точке А, начиная работать при максимальной толщине срезаемого слоя и наибольшей нагрузке, что исключает начальное проскальзывание зуба. При попутном фрезеровании получается поверхность с меньшей шероховатостью и более высокой точностью, так как зубьями фрезы во время обработки заготовка прижимается к столу станка, что уменьшает вибрацию.

      Для успешного применения попутного фрезерования необходимо беззазорное соединение ходового винта и маточной гайки стола станка.

      Учитывая достоинства и недостатки рассмотренных методов, попутное фрезерование используют для предварительных и чистовых работ при отсутствии корки, на жестких станках с компенсаторами зазоров в узлах стола. Встречное фрезерование рекомендуется для предварительной обработки, и особенно при работе по корке.

      На каждый зуб фрезы, находящийся в пределах угла контакта, действует своя сила сопротивления срезаемого слоя. Каждую из этих сил можно разложить на составляющие, действующие тангенциально (по касательной) к зубьям фрезы и по радиусам фрезы. Суммарная окружная, или касательная, сила и радиальная сила имеют равнодействующую R, которую можно разложить на две силы -- горизонтальную и вертикальную .

      Окружная, или касательная, сила имеет наиболее важное значение, так как производит основную работу резания. По значению силы определяют мощность электродвигателя привода станка и рассчитывают на прочность валы, зубчатые колеса и другие звенья привода станка.

      Радиальная сила характеризует то усилие, с которым обрабатываемая заготовка стремится оттолкнуть от себя фрезу; эта сила изгибает фрезерную оправку и давит на опоры шпинделя.

      Горизонтальная составляющая силы резания определяет усилие, которое необходимо приложить к столу ставка для осуществления рабочей подачи.

      При встречном фрезеровании направление горизонтальной составляющей противоположно направлению движения (по стрелке s) стола. При попутном фрезеровании горизонтальная составляющая направлена в сторону движения стола.

      При фрезеровании цилиндрической фрезой с винтовыми зубьями равнодействующая силы составляет с осью фрезы острый угол, следовательно, появляется осевая сила , направленная параллельно оси фрезы. В зависимости от направления винтовых зубьев фрезы меняется и направление силы . Для создания более благоприятных условий фрезерования целесообразно применять фрезу с таким направлением зуба, чтобы сила была направлена к шпинделю; в противном случае осевая сила будет стремиться вытянуть фрезу с оправкой из посадочного конусного отверстия шпинделя.

      Для того чтобы уравновесить действия осевых сил, иногда прибегают к использованию набора из двух фрез с правым и левым направлениями винтовых канавок между лезвиями.

      При фрезеровании торцевыми фрезами действуют те же силы, что и при фрезеровании цилиндрическими.

      Значение главной составляющей силы резания -- окружной силы -- определяется по эмпирической, т. е. найденной опытным путем, формуле

,

      где -- постоянный коэффициент, зависящий от свойств обрабатываемого материала, типа фрезы и ее геометрии; , и --  показатели степени, также зависящие от механических характеристик обрабатываемого материала, типа и геометрии фрезы. Значения , и приводятся в справочниках по выбору параметров режимов резания.

Информация о работе Процесс фрезерования