Основы триботехники

Автор работы: Пользователь скрыл имя, 01 Февраля 2011 в 21:51, курсовая работа

Описание работы

Триботехника – наука о контактном взаимодействии твердых тел при их относительном движении, охватывающая весь комплекс вопросов трения, изнашивания и смазки машин.

Файлы: 1 файл

реферат.doc

— 138.50 Кб (Скачать файл)

Очевидно, действие присадок неэффективно, если металл не вступает в реакцию с активной частью присадки. Например, платина и серебро не вступают в реакцию с серой.

Некоторые твердые тела могут производить  смазочное действие, организуя и  поддерживая режим трения при граничной смазке.

Из предыдущего  вытекает, что граничная пленка должна обладать высоким сопротивлением продавливанию  и низким сопротивлением срезу. Исходя из таких требований, к твердым  смазочным материалам можно отнести  некоторые тела слоисто-решетчатой, пластинчатой структуры, мягкие металлы и тонкие пленки пластиков.

Из тел  слоисто-решетчатой структуры свойствами, необходимыми для смазки металлических  поверхностей, обладают графит, молибденит (дисульфид молибдена MoS2), сульфид серебра, пористый свинец и дисульфид вольфрама. Остановимся на механизме смазочного действия графита и молибденита, который в общем аналогичен и для других тел подобной структуры.

В кристаллической  решетке графита атомы углерода расположены в параллельных слоях, отстоящих один от другого (ближайшего) на расстоянии 0,34 нм, а в каждом слое они размещаются в вершинах правильных шестиугольников с длиной стороны 0,14 нм (рис. 4.2). Так как силы взаимного притяжения между атомами тем меньше, чем больше расстояние между ними, то связи между атомами в слоях значительно прочнее, чем между слоями. Поэтому при большом сопротивлении графита сжатию перпендикулярно слоям (плоскостям спайности) сопротивление срезу параллельно слоям мало, Если учесть, что незакрепленные агрегаты пластинчатых кристаллов располагаются на металлической поверхности плоскостями спайности, то образовавшийся граничный слой из цепочек, нормальных к поверхности, обладает качествами (прочностью и сопротивлением деформации), характерными для граничных слоев, образованных смазочными маслами.

Твердость графита в направлении, перпендикулярном плоскости спайности, почти такая  же, как у алмаза, что дает основание  предположить, что соответствующим образом ориентированные частицы графита могут без разрушения внедриться в металлическую поверхность. По-видимому, вследствие этого во всех случаях действенности смазки графитом металлический контакт поверхностей трения почти или совсем отсутствует: даже при значительной пластической деформации контактирующих поверхностных слоев сдвиги протекают под пленкой смазочного материала или внутри него. Слабое сопротивление графита срезу по плоскостям,  параллельным плоскостям спайности, обусловливает при трении послойное скольжение в нанесенных на поверхностях пленках. Коэффициенты трения графитированных поверхностей могут достигнуть малых величин (0,03 ... ...0,04).

Приведенное описание не является полным. Некоторые  факты не позволяют объяснить  смазочное действие графита только слоистой структурой. Так, сила трения при смазке графитом в сухом воздухе выше, чем во влажном; сила трения в атмосфере азота существенно больше, чем на воздухе, причем в сухом азоте выше, чем во влажном; графит не обладает хорошей смазочной способностью в восстановительной среде смеси газов. Таким образом, наличие пленки влаги или окисных пленок является необходимым условием для проявления графитом его смазывающего действия. Влага и окисные пленки на металлических поверхностях, образованию которых способствует влага, улучшают адгезию графита к этим поверхностям, без чего прочность граничного слоя недостаточна.

Кристаллическая решетка дисульфида молибдена (рис. 4.3) подобна решетке графита: между атомами молибдена и серы имеются тесные связи, в то время как расстояние между слоями атомов серы относительно больше. Благодаря этому дисульфид молибдена можно использовать как смазочный материал как при низких температурах (до —50 °С), так и в вакууме. При температуре 538°С молибденит превращается в триокись, являющуюся абразивом.

При наличии  на поверхности молибденита влаги  сила трения увеличивается. Предполагается, что водяной пар реагирует с атомами серы, что может вызвать коррозию стальной поверхности.

Кроме тел слоисто-решетчатой структуры, все остальные твердые смазочные  материалы образуют граничный слой с необходимыми качествами по сопротивлению сжатию и сдвигу (срезу), но не имеющий строго ориентированной  структуры.  Поэтому формально можно Нанесенные твердые пленки при многократных взаимных перемещениях поверхностей быстро изнашиваются. Вследствие этою их используют в качестве приработочного покрытия, а при однократном контактирования поверхностей — при глубокой вытяжке металлом.

Смазывание  узлов трения металлом может быть осуществлено при использовании  ИП (см. гл. 18). В этом случае сила трения может быть уменьшена в 10 раз, а износ полностью устранен. Здесь действуют иные силы и принципы: электрические силы, удерживающие пленку в зазоре, отсутствие микронеровностей поверхности, которые утапливаются в пленке, и др. Ошибочно полагать, что при смазывании узлов машин металлом углеводородный смазочный материал будет не нужен. Функции его изменяются: он служит в качестве транспорта подачи металла в зону трения, участвует в физико-химических процессах на поверхности контакта при образовании металлической пленки. Как и прежде, углеводородная составляющая смазочного материала охлаждает узлы трения и защищает их от коррозии. Эффект ИП по многим принципиальным признакам отличается от трения при граничной смазке, что позволяет характеризовать его как новый вид трения.

Некоторые материалы вследствие обычного металлургического процесса или искусственного пропитывания содержат вещества, способные служить твердым смазочным материалом; например, на приработанной поверхности конструкционного чугуна графит размазывается, образуя граничный слой. Такой же слой создается на поверхностях деталей из пористых антифрикционных материалов, пропитанных минеральными маслами, графитом и дисульфидом молибдена. В более широком понятии граничным смазочным материалом служит также политетрафторэтилен, когда им пропитывают пористые подшипниковые материалы. В свинцовистой бронзе, в твердой медной основе которой вкраплен свинец, последний при скольжении размазывается по поверхности, покрывая ее тонкой пленкой. Эта пленка по мере изнашивания сплава возобновляется. Дорожки качения и тела качения подшипника, работающего при температурах выше 300°С, покрывают иногда серебром для предохранения от окисления и для использования в качестве смазывающего материала.

Ошибочно  полагать, что сила трения увеличивается за счет износа. Обычно этого не происходит. Если с увеличением износа коэффициент трения повышается, то это результат вторичных явлений, вытекающих из изменения шероховатости поверхности. 

Заключение

   Триботехнические явления должны  учитываться при проектировании и эксплуатации машин и механизмов. Они проявляются при земляных работах, в сельском хозяйстве, строительстве, добывающей промышленности и во многих других случаях. Потери средств от трения и износа в развитых странах составляют 4-5% национального дохода, а преодоление сопротивления трения поглощает во всем мире 20-25% вырабатываемой за год энергии. Анализ специальных комитетов Международного совета по трибологии показал, что за полный цикл эксплуатации машин эксплуатационные расходы, затраты на ремонт и запасные части в несколько раз превышают затраты на изготовление новой техники.

   Повышение экономически и экологически  целесообразной долговечности и  надежности машин, технологического  оборудования и инструмента непосредственно  связано с повышением износостойкости. Решение этой актуальной и практически необходимой задачи возможно только на базе глубоких, научно обоснованных решений. Управление трением, правильный выбор материалов по критериям трения и износостойкости, рациональное конструирование узлов трения и деталей машин и оптимизация условий эксплуатации могут существенно продлить срок жизни и повысить эффективность машин, снизит вредные экологические воздействия при незначительном увеличении их стоимости. В этой связи исключительное значение приобретают работы в области триботехнического материаловедения, а также теоретические и экспериментальные исследования в области физико-химической механики процессов трения и изнашивания с использованием новейших испытательных средств и измерительной техники, которые могут раскрыть и изыскать новые способы снижения потерь на трение и повышения износостойкости машин, приборов и оборудования. Задача повышения экономически и экологически целесообразной долговечности узлов трения крайне усложняется каждый год, так как неумолимая тенденция развития науки, техники и технологии обязательно ведет к ужесточению и усложнению режима работы машин, а значит, узлов трения и деталей по нагрузкам, скоростям, температурам, диссипируемым энергиям, вибрации и т.д. Хорошо известно также, что стремление снизить материалоемкость машин приведет к уменьшению габаритов и удельных массовых характеристик узлов трения, которые еще более усложнят задачу. Принципиально новой является задача повышения износостойкости элементов оборудования ядерной энергетики. Исключительное значение приобретают работы по изнашиванию узлов трения и деталей автоматизированных и программируемых устройств, особенно для роботов и манипуляторов.

   Борьба с потерями энергии  и выходом из строя машин  и оборудования от трения и износа во многих странах стала государственной задачей. Во многих странах большие коллективы научных работников и инженеров работают над проблемами трения и изнашивания. Этим работам в передовых промышленно развитых странах уделяется повышенное внимание на государственном уровне. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Библиография 

  1. Основы  трибологии (трение, износ, смазка)/ А. В. Чичинадзе, Э. Д. Браун, Н. А. Буше и др.; Под общ. ред. А. В. Чичинадзе: Учебник  для технических вузов. – 2- изд., переработ. и доп. – М.: Машиностроение, 2001.
 
  1. Гаркунов  Д. Н. Триботехника (износ и безызносность): Учебник. – 4-е изд., переработ. и доп. – М.: «Издательство МСХА», 2001.

Информация о работе Основы триботехники