Автор работы: Пользователь скрыл имя, 05 Марта 2013 в 15:46, реферат
Представителей живой природы условно можно разделить на существа, относящиеся к макро- и микромиру. К макромиру относятся животные всех видов: птицы, насекомые, гельминты и т. д., к микромиру - бактерии, вирусы, рикетсии, микоплазмы, грибы, простейшие, прионы, нуклеиновые кислоты (инфекционные ДНК и РНК). Бактерии, грибы, простейшие являются одноклеточными представителями микромира и к ним применим термин «микроорганизмы», так как они представляют собой самостоятельные, способные к автономному существованию организмы.
Введение
Генетика и история ее развития
Наследственность и изменчивость
Клетка - элементарная единица живого
Клеточная теория
Типы клеточной организации
Структурно-функциональная организация клеток эукариотического и прокариотического типов
6.1 Строение и функционирование клетки растений
.2 Строение и функционирование клетки животных
.3 Строение и функционирование бактериальной клетки
Химический состав и структура вирусов
Материальные основы наследственности
8.1 Нуклеиновые кислоты - молекулярные носители наследственности
Строение и функционирование генома бактерий
Биологический синтез белка
Изменчивость бактерий
11.1 Фенотипическая изменчивость
.2 Генотипическая изменчивость
. Особенности генетики вирусов
. Методы молекулярно-генетического анализа
. Понятие о биотехнологии и генной инженерии
Мутации фенотипически проявляются изменением морфологических, биохимических, вирулентных и других свойств.
Диссоциация - это особый, присущий только бактериям вариант изменчивости, при котором происходит культуральная изменчивость, т. е. расщепление вида и возникновение при росте на плотной питательной среде двух основных типов колоний: S-форма - гладкие (от английского smooth - гладкий) и R-форма (от английского rough - шероховатый) - шероховатые. Между этими формами имеются и переходные М-, О-, Д-формы.
Микроорганизмы из колоний в S-форме обладают хорошо выраженными антигенными и вирулентными свойствами и, напротив, у бактерий из колоний в R-форме эти свойства выражены слабо. Однако, не всегда S-форма микробов является свидетельством их вирулентности. Например, возбудитель сибирской язвы, туберкулеза, чумы вирулентны в R-форме.
В основе диссоциации лежат
мутации, спонтанно возникающие
в естественной среде обитания микробов
или же при культивировании их
на искусственных питательных
Диссоциация имеет большое значение для микроорганизмов, так как они, благодаря этому явлению, получают селективное преимущество, обеспечивающее их существование в организме животных и человека, а также во внешней среде. Известно, что S-формы более устойчивы к фагоцитозу, R-формы - к факторам естественной среды обитания.
Геном бактерий способен к репарации. Репарация - это процесс восстановления структуры поврежденной ДНК, который обеспечивается многочисленными ферментами, определяющими состояние этой кислоты. Например, фоторепарация зависит от фотолиаз. Эти ферменты активизируются при образовании тиминовых димеров в ДНК под воздействием ультрофиолетового облучения и деполизируют эти димеры до исходных мономеров.
Наибольшее значение в
жизнедеятельности
Кроме мутаций у бактерий
известны рекомбинационная изменчивость.
Рекомбинация - это передача генетического
материала от клетки-донора с одним
генотипом к клетке-реципиенту с
другим генотипом. В результате такой
передачи образуются рекомбинанты - т.
е. бактерии, обладающие свойствами обоих
родителей. Рекомбинация является важнейшим
фактором эволюции, т. к. между разными
особями происходит обмен генетической
информацией, что повышает уровень
их приспосабливаемости к
Различают следующие способы рекомбинационной (комбинативной) изменчивости: трансформация, трансдукция, конъюгация.
Трансформация (от латинского transformo - превращать, преобразовывать) - изменение генома бактерий - реципиента, в результате поглощения из среды свободного фрагмента ДНК клетки-донора.
Впервые явление трансформации начал изучать Ф. Гриффитс (1928), используя в опытах культуры пневмококков. Эти микроорганизмы способны к диссоциации и образуют на плотной питательной среде колонии в S-форме и R-форме. Микроорганизмы образующие S-формы колоний капсульные, они патогенны для белых мышей. Бактерии, формирующие на агаре R-формы колоний бескапсульные, не патогенные для мышей. Фактором патогенности у пневмококков является капсула, что было учтено Ф. Гриффитсом при проведении опытов. Он ввел мышам вместе две культуры пневмококков: одну - непатогенную бескапсульную (R-штамм), а вторую - патогенную с капсулой (S-штамм), но обезвреженную нагреванием. Мыши, получившие смесь упомянутых культур пали. Из крови павших мышей была получена культура, микроорганизмы которой имели капсулу и обладали патогенностью. Контрольные эксперименты продемонстрировали, что введение мышам по отдельности живых пневмококков бескапсульных и убитых нагреванием не приводит к гибели животных. Ученый сделал вывод, что непатогенные клетки R-штамма могут рансформироваться в патогенные пневмококки, обладающие капсулой.
Грачевой (1946) был получен вариант кишечной палочки с некоторыми свойствами характерными для сальмонелл. Она культивировала E. Coli на среде, к которой добавлялась убитая культура сальмонелл.
В результате многочисленных экспериментов было установлено, что путем трансформации могут быть перенесены различные признаки: синтез капсульного полисахарида, синтез различных ферментов, устойчивость к антибиотикам и т. д.
Было обнаружено, что трансформация имеет место чаще в пределах одного вида, но может наблюдаться и между разными видами. В процессе трансформации участвуют две бактериальные клетки: донор и реципиент.
О. Эвери, К. Мак-Леод, М. Мак-Карти (1944) установили, что трансформирующим фактором является ДНК. По их мнению, трансформация представляет собой поглощение изолированной ДНК бактерии донора клетками бактерии реципиента.
Трансформация - сложный биологический процесс, который протекает поэтапно. Первая стадия этого процесса заключается в адсорбции трансформирующей ДНК на поверхности микробной клетки. Вторая - проникновение ДНК через определенные рецепторные участки стенки бактерии-реципиента при помощи специальных белков внутрь клетки. Третья стадия представляет собой спаривание части ДНК донора с ДНК реципиента, четвертая - включение в ДНК реципиента одной из цепей трансформирующего элемента. И пятая - изменение нуклеотида клетки-реципиента в ходе ее последовательных делений. Способность бактерий реципиентов к трансформации была названа компентентностью. Компентентность определяется физиологическим состоянием клетки-реципиента к периодам клеточного цикла.
Трансдукция (от латинского
transductio - перенос) - перенос генов
из одной бактериальной клетки в
другую при помощи бактериофага. Явление
трансдукции впервые установили
Н. Циндлер и ДЖ. Ледербер (1952). Для
исследований они использовали патогенные
для белых мышей два штамма
S. typhimurium (22 A и 2A). Штамм 22 А - ауксотрофный,
не способный синтезировать
Явление трансдукции установлено не только у сальмонелл, но и у кишечной палочки и актиномицетов. У бактерий наблюдается трансдукция одного, реже двух и весьма редко трех сцепленных генов.
Различают следующие виды трансдукции: общую (неспецифическую), специфическую и абортивную.
Общая трансдукция характеризуется
тем, что фаг играет роль переносчика
генетического материала
Специфическая трансдукция заключается в том, что бактериофаг переносит от клетки-донора в клетку-реципиента строго определенные гены и встраивает их в определенные участки реципиента. Бактериофаг может встраиваться в нуклеоид клетки-реципиента. Клетки бактерий, имеющие в своей хромосоме профаг, называют мезогенными, а явление совместного существования ДНК бактерий и профага называется мезогенным.
Абортивная трансдукция
характеризуется тем, что фрагмент
ДНК донора, перенесенный в клетку
реципиента не включается в ее нуклеоид,
а может сохраняться в
Конъюгация (от латинского conjugatio - контактирование) - перенос генетического материала от одной бактериальной клетки (донора) к другой (реципиенту) при непосредственном контакте этих клеток. Явление конъюгации открыли Дж. Ледерберг и Э. Татуш (1946).
Ученые взяли два ауксотрофных мутантных штамма E. Coli к-12: один не способный синтезировать треонин и лейцин (Thr-Leu-), другой - метионин и биотин (Met-Bio-) и выращивали их вместе в течение 12 часов на полноценной питательной среде. Затем выросшую культуру отцентрифугировали и отмыли от полноценной питательной среды и засеяли на минимальную питательную среду.
На этой среде без метионина,
биотина, треонина и лейцина появились
прототрофные колонии Met+, Bio+, Thr+, Leu+. Опытным
путем ученые установили, что ни
трансформации, ни трансдукции в
данном случае не наблюдалось. Был сделан
вывод о происхождении
В 1952 году Хейтс выяснил, что при конъюгации одна клетка является мужским донором, а другая - женским реципиентом. Клетки-доноры обладают половым фактором F ( от fertility - плодовитость), который представляет собой замкнутую в кольцо молекулу ДНК. Перенос генетического материала происходит в одном направлении - от донорской (мужской F+) клетки к реципиентной (женской F-).
Необходимым условием конъюгации является наличие в клетке-доноре трансмиссивной плазмиды, продуцирующей половые пили, образующие трубочку, по которой плазмидная ДНК передается из клетки-донора в клетку-реципиент, в результате чего последняя приобретает донорские свойства. В случае, когда F-фактор встраивается в хромосому донора и функционирует в виде единого с ней репликона, то нуклеоид донора приобретает способность передаваться в клетку-реципиент. Донорские клетки, содержащие встроенный в нуклеоид F-фактор, называются Hfr-клетками ( от английского high frequency of recombination - высокая частота рекомбинаций).
Процессы генетической рекомбинации
у бактерий (трансформация, трансдукция,
конъюгация) различны по форме, но аналогичны
по содержанию, т. к. в результате каждого
процесса происходит перенос фрагмента
ДНК от одной клетки к другой.
При трансформации бактерии-
12. Особенности генетики вирусов
Геном вирусов содержит один тип нуклеиновой кислоты - ДНК или РНК. Эти нуклеиновые кислоты, как носители генетической информации вирусов, могут быть однонитчатыми или двунитчатыми. Репликация генома вирусов зависит от строения нуклеиновой кислоты, процесс транскрипции осуществляется многочисленными путями.
ДНК-содержащие вирусы размножаются
в ядрах эукариотических
РНК-овые вирусы могут быть плюс-нитевыми (РНК+) и имнус-нитевыми (РНК-).
Трансляция у плюс-нитевых
вирусов (пикорновирусы, флавивирусы
и др.) начинается непосредственно
с исходной РНК. Процесс трансляции
у минус-нитевых вирусов не может
осуществляться на прямую. Этим вирусам
необходим предварительный
У РНК-овых двунитчатых вирусов
плюс-нить не используется. Эти вирусы
в своем жизненном цикле
Представители семейства Retroviridae обладают плюс-нитевым вирусным геномом, но не смотря на это генетическая информация у них снаяала переписывается на ДНК, т. е. по РНК вируса образуется комплементарная цепь ДНК. Течение этого процесса реализуется благодаря РНК-зависимой ДНК полимеразы (ревертазы). Образующаяся ДНК интегрирует с геномом клетки. У вирусов семейства Retroviridae транскрипцию встроенной ДНК обеспечивают РНК-полимеразы клеток эукариот.
Подобно бактериям, вирусы подвержены генотипической и фенотипической изменчивости.
При заражении эукариотических
клеток ассоциацией вирусов
Пересортировка генов
связана с перестройкой у вирусов,
имеющих сегментированный геном. Так,
рекомбинанты вируса гриппа получают
при совместном культивировании
вирусов с разными генами гемагглютинина
и нейтролинидазы. В результате происходит
быстрое изменение свойств
Множественная реактивация возникает при заражении клетки несколькими вирусами с дефективными геномами. Если повреждения генома различны у разных вирусов, то вирус может репродуцироваться, т. е. вирусы с поражением разных генов дополняют друг друга за счет рекомбинации геномов.
Перекрестная реактивация возникает в случае заражения клетки двумя вирусами, у одного из которых геном поврежден, а у другого - полноценный. При такой смешанной инфекции возникает рекомбинация, в результате которой появляются вирионы со свойствами обоих родителей.
Гетерозиготность - это формирование вирусов, содержащих в своем составе два разных генома или один полный геном одного вируса и часть генома другого вируса. Гетерозиготность имеет место при совместном культивировании двух штаммов вируса.