Влияние углерода и постоянных примесей на свойства сталей

Автор работы: Пользователь скрыл имя, 19 Сентября 2011 в 14:33, курсовая работа

Описание работы

Наука о металлах развивается широким фронтом во вновь созданных научных центрах с применением электронных микроскопов и другой современной аппаратуры, с использованием достижений рентгенографии и физики твердого тела. Все это позволяет более глубоко изучить строение металлов и сплавов и находить новые пути повышения механических и физико-химических свойств.

Содержание работы

1.Введение……………………………………………………………………….3

2.Общие сведения……………………………………………………………….5

2.1. Химические свойства………………………………………………………5

2.2.Физические свойства………………………………………………………..6

3.Атомно-кристаллическое строение металлов……………………………….8

4.Основы получения чугуна и стали…………………………………………...10

4.1.Получение чугуна…………………………………………………………...10

4.1.1Общие сведения…………………………………………………………....10

4.1.2Основы получения………………………………………………………....11

4.2.Производство стали………………………………………………………....12

4.2.1.Общие сведения о стали…………………………………………………..12

4.2.2Основы получения стали…………………………………………………..15

5.Механические свойства металлов……………………………………………19

5.1.Статистические испытания…………………………………………………19

5.2.Динамические испытания…………………………………………………...21

5.3.Усталостные (на выносливость) испытания………………………………..22

6.Влияние углерода и постоянных примесей на свойства сталей……………23

7.Заключение…………………………………………………………………….24

8.Список литературы……………………………………………………………25

Файлы: 1 файл

реферат на тему металлические изделия.doc

— 1.27 Мб (Скачать файл)

          При испытании значение Р принимают: для стали и чугуна - 3∙104 Н, меди и сплавов - 1∙104 Н, а очень мягких металлов (алюминия, баббита) – 2,5∙103 Н. Метод применим для металлов и сплавов с твердостью не более 4500 МПа, так как при большей твердости стальной шарик может деформироваться.

      Твердость по Роквеллу измеряют в условных единицах по формулам:

HR=100-e (при вдавливании алмазного конуса с углом при вышине 120о),  (2)

HR=130-e ( при вдавливании стального шарика, D=1,588∙10-3 м),                  (3)

где е = (h - ho) /2∙10-6 , h – глубина внедрения наконечника (м), под действием общей нагрузки Р после снятия основной нагрузки Р1 , ho – глубина внедрения наконечника под действием предварительной нагрузки Ро, (м).

      Предварительная нагрузка Ро при испытаниях независимо от вида наконечника принята 100 Н; основная Р1 для стального шарика – 900 Н (шкала В), алмазного конуса – 1400 Н (шкала С) и 500 Н (шкала А). В соответствии с этим твердость по Роквеллу обозначается HRA, HRB, HRC. Метод широко применяется в промышленности, особенно для твердых и тонколистовых металлов и сплавов.

      Твердость по Виккерсу определяют по формуле:

HV=1, 8544 (P/d2) ∙10-6 , МПа,                                                                               (4)

где Р  – нагрузка на алмазную пирамиду от 500 до 1200 Н; d – среднеарифметическое значение двух диагоналей отпечатка, м.

      Твердость по Виккерсу обозначается HV5, HV10 и т.д. Чем тоньше и тверже металл и сплав, тем меньше должна быть нагрузка пи испытании.

      Для определения микротвердости мелких изделий и структурных составляющих металлов используют также метод Виккерса в приборном сочетании  с металлографическим микроскопом.

      Испытание металлов на вязкость разрушения проводят на стандартных образцах с надрезом при трехточечном изгибе. Метод позволяет оценить сопротивление металла распространению, а не зарождению тещины или трещиноподобного дефекта любого происхождения, всегда имеющегося в металле. Вязкость разрушения оценивается параметром К, предоставляющим собой коэффициент интенсивности напряжений или локальное повышение растягивающих напряжений (МПа) в вершине трещины:

      К=YσH Πc                                                                                                        (5)

      Условие стабильного существования трещины  без ее роста и развития будет К<К, где К – критический коэффициент интенсивности напряжений, определяемой при испытании образцов – балочек  с надрезом на изгиб. Он характеризует трещиностойкость металла и является структурно-чувствительной характеристикой; уменьшается при понижении температуры, увеличении скорости приложения нагрузки и коррозии металла. 

      5.2 Динамические испытания 

      Динамические  испытания металлов проводят на ударный  изгиб и знакопеременное циклическое  нагружение. На ударный изгиб испытывают образцы металла размерами (1х1х5,5)10-2 м с концентратом напряжения (надрезом) посередине. Испытание проводят на маятниковом копре. Сопротивление металла ударному изгибу называют ударной вязкостью и обозначают KCU, KCV и KCT (где KC – символ ударной вязкости, а U,V и T – вид и размер концентратора напряжения). Она представляет работу Q удара, отнесенную к начальной площади Ао сечения образца в месте концентратора, т.е. KC=Q/Ao, МДж/м2. Ударная вязкость характеризует сопротивление металла хрупкому разрушению и используется для определения порога хладноломкости.  

      5.3 Усталостные (на выносливость) испытания 

      Сопротивление металла циклическому нагружению характеризуется  максимальным напряжением, которое  может выдержать металл без разрушения за заданное число циклов и называется пределом выносливости. Применяют симметричные и нессиметричные циклы нагружения. Предел выносливости резко снижается при наличии концентратов напряжений. Чувствительность к ним при симметричном цикле нагружения определяется  эффективным коэффициентом напряжений Кэф-1-1H (где σ-1 и σ-1Н – пределы выносливости образцов гладкого и снадрезом). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      6 ВЛИЯНИЕ УГЛЕРОДА И ПОСТОЯННЫХ ПРИМЕСЕЙ НА СВОЙСТВА СТАЛЕЙ 

      Сталь является многокомпонентным сплавом, содержащим углерод и ряд постоянных примесей Mn, Si, S, P, O, H., N. После охлаждения сталь состоит из феррита и цеменита. От их соотношения зависят многие свойства стали. При содержании углерода в стали более 1…2% твердость ее возрастает, а временное сопротивление уменьшается, что объясняется выделением по границам бывшего зерна вторичного цеменита. Кремний и марганец присутствуют в стали в количестве соответственно 0,35…0,4%и 0,5…0,8%. Кремний повышает предел текучести и снижает способность стали к холодной деформации – высадке, штамповке. Марганец повышает прочность, не снижая пластичности, но уменьшает красноломкость, т.е. хрупкость при высоких температурах, вызванную серой. Последняя образует с железом эвтектику при 988оС, по границам его зерен. При прокатке или ковке такой стали при 1000…1200оС эвтектика между зернами расплавляется, связь между ними нарушается, вследствие чего в направлении деформирования появляются надрывы и трещины. Это явление называется красноломкостью. Сера, кроме того, снижает ударную вязкость и предел выносливости, ухудшает сваримость и коррозионную стойкость. Поэтому содержание серы ограничивается до 0,035…0,06%. Марганец обладает большим сродством к сере и образует с ней тугоплавкое соединение MnS, практически исключающее красноломкость.

      Фосфор  является вредной примесью в стали. Растворяясь в феррите, он сильно искажает кристаллическую решетку, повышает σВ, σ0,2 и порог хладноломкости; уменьшает δ, ψ и KCT. Каждая 0,01% Р повышает порог хладноломкости стали на 20…25оС. Содержание его в стали ограничивается до 0,025…0,08%.

      Азот  и кислород присутствуют в стали  в виде хрупких включений FeO, SiO2, Al2O3, Fe4N, твердых растворов или в свободном состоянии в раковинах, трещинах и других дефектных участках металла. Концентрируясь по границам зерен в виде оксидов и нитридов, они повышают порог хладноломкости, уменьшают ударную вязкость и предел выносливости стали.

      Особенно  вреден растворенный в стали водород. Он не только охрупчивает ее, но и  приводит к образованию в катаных  заготовках и поковках тонких трещин – флокенов. В изломе они имеют вид хлопьев серебристого цвета. Флокены резко ухудшают свойства стали. 
 
 
 
 
 
 
 
 
 

      7 ЗАКЛЮЧЕНИЕ 

      Таким образом, важнейшая стадия металлургического  производства – получение металла  или сплава из его соединения разными методами. Для проведения этой стадии руду предварительно подготавливают, например крупнокусковые руды измельчают. Заключительная стадия ряда металлургических производств – обработка полученного металлов давлением или литьем, термическая обработка и т.д.

      Металлургическая  наука исследует все эти стадии производственного процесса. При этом она опирается на химию, физику, минералогию, геологию и другие естественные науки.

      В настоящее время используют в  машиностроении главным образом  сплавы железа – стали. На их долю приходится более 90% общей массы применяемых металлов. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      8 СПИСОК ЛИТЕРАТУРЫ 

    1.  Технология металлов и сварка. Под ред. П.И. Полухина. М. Высшая школа. 1977.
    2. Строительные материалы. А.Г. Домокеев. М. Высшая школа. 1989
    3. Большая советская энциклопедия. Под ред. А.М. Прохорова. М. изд. «Советская энциклопедия». 1974.
    4. Строительные материалы: Учеб/Под общ. Ред. В.Г.Микульского. – М.:Изд-во АСВ, 2000-536с.
 

        
 

         

                                                                                                                                                                                        

                                                                                                                                                          

Информация о работе Влияние углерода и постоянных примесей на свойства сталей