Автор работы: Пользователь скрыл имя, 19 Сентября 2011 в 14:33, курсовая работа
Наука о металлах развивается широким фронтом во вновь созданных научных центрах с применением электронных микроскопов и другой современной аппаратуры, с использованием достижений рентгенографии и физики твердого тела. Все это позволяет более глубоко изучить строение металлов и сплавов и находить новые пути повышения механических и физико-химических свойств.
1.Введение……………………………………………………………………….3
2.Общие сведения……………………………………………………………….5
2.1. Химические свойства………………………………………………………5
2.2.Физические свойства………………………………………………………..6
3.Атомно-кристаллическое строение металлов……………………………….8
4.Основы получения чугуна и стали…………………………………………...10
4.1.Получение чугуна…………………………………………………………...10
4.1.1Общие сведения…………………………………………………………....10
4.1.2Основы получения………………………………………………………....11
4.2.Производство стали………………………………………………………....12
4.2.1.Общие сведения о стали…………………………………………………..12
4.2.2Основы получения стали…………………………………………………..15
5.Механические свойства металлов……………………………………………19
5.1.Статистические испытания…………………………………………………19
5.2.Динамические испытания…………………………………………………...21
5.3.Усталостные (на выносливость) испытания………………………………..22
6.Влияние углерода и постоянных примесей на свойства сталей……………23
7.Заключение…………………………………………………………………….24
8.Список литературы……………………………………………………………25
Атомы металлов
Черные металлы имеют простые
кубические ячейки решеток (
Железо, олово, титан и другие металлы обладают свойствами аллотропии, т.е. способностью одного и того же химического элемента при различной температуре иметь разную кристаллическую структуру. Аллотропические превращения сопровождаются выделением или поглощением теплоты. Железо имеет четыре аллотропические формы: α-Fe; β-Fe, γ-Fe, δ-Fe. Практическое значение имеют α -Fe и γ -Fe, так как p-Fe и б-Fe отличаются от a-Fe только величиной межатомного расстояния, а для β-Fe характерно отсутствие магнитных свойств.
Рис.3-кривые охлаждения и нагревания железа.
Температура, при которой происходит переход металла из одного аллотропического вида в другой, называется критической. Величины этих температур видны на диаграмме охлаждения и нагревания чистого железа (рис. 3) в виде участков, свидетельствующих о том, что фазовые превращения происходят с выделением теплоты при нагревании.
Все металлы находятся в твердом состоянии до определенной температуры. При нагреве металла амплитуда колебания атомов достигает некоторой критической величины, при которой происходят разрушение кристаллической решетки и переход металлов из твердого в жидкое состояние. Процесс кристаллизации заключается в росте кристаллов путем отложения новых кристаллических групп вокруг возникших зародышей. Рост кристаллических образований происходит в определенных направлениях. Вначале образуются главные оси кристалла путем роста в трех взаимно перпендикулярных направлениях, а затем от каждой из этих осей образуются новые и возникает не полностью завершенный кристалл, называемый дендритом. В дальнейшем все промежутки между осями дендрита заполняются упорядоченно расположенными атомами.
В условиях несвободной кристаллизации образующиеся кристаллы получают неправильные очертания и форму и называются кристаллитами или зернами. Величина зерен оказывает существенное влияние на механические свойства металлов: чем мельче зерна, тем прочнее металл.
Технические металлы и сплавы представляют
собой поликристаллические тела, состоящие
из большого числа различно ориентированных
кристаллических зерен (поперечные размеры
зерен – 0,001...0,1 мм). Поэтому в целом металлы
и сплавы можно считать условно изотропными
телами.
4 ОСНОВЫ ПОЛУЧЕНИЯ ЧУГУНА И СТАЛИ
Способы
их промышленного получения
4.1 Получение чугуна
4.1.1 Общие сведения
Чугунами называют железоуглеродистые сплавы, содержащие более 2 %. углерода. Чугун обладает более низкими механическими свойствами, чем сталь, но дешевле и хорошо отливается в изделия сложной формы. Различают несколько видов чугуна.
Белый чугун, в котором весь углерод (2,0...3,8%) находится в связанном состоянии в виде Fe3C (цементита), что и определяет его свойства: высокие твердость и хрупкость, хорошую сопротивляемость износу, плохую обрабатываемость режущими инструментами. Белый чугун применяют для получения серого и ковкого чугуна и стали.
Серый чугун содержит углерод в связанном состоянии только частично (не более 0,5%). Остальной углерод находится в чугуне в свободном состоянии в виде графита. Графитовые включения делают цвет излома серым. Чем излом темнее, тем чугун мягче. Образование графита происходит в результате термической обработки белого чугуна, когда часть цементита распадается на мягкое пластичное железо и графит. В зависимости от преобладающей структуры различают серый чугун на перлитной, ферритной или ферритоперлитной основе.
Свойства серого чугуна зависят от режима охлаждения и наличия некоторых примесей. Например, чем больше кремния, тем больше выделяется графита, а потому чугун делается мягче. Серый чугун имеет умеренную твердость и легко обрабатывается режущими инструментами. Серый чугун, применяемый в строительстве, должен иметь предел прочности при растяжении не менее 120 МПа, а предел прочности при изгибе 280 МПа.
Из серого чугуна отливают элементы конструкций, хорошо работающие на сжатие: колонны, опорные подушки, башмаки, тюбинги, отопительные батареи, трубы водопроводные и канализационные, плиты для полов, станины и корпусные детали станков, головки и поршни двигателей, зубчатые колеса и другие детали.
Ковкий чугун получают после длительного отжига % белого чугуна при высоких температурах, когда цементит почти полностью распадается с выделением свободного углерода на ферритной или перлитной основе. Углеродные включения имеют округлую форму. В отличие от серых ковкие чугуны являются более прочными и пластичными и легче обрабатываются.
Высокопрочные (модифицированные) чугуны значительно превосходят обычные серые по прочности и обладают некоторыми пластическими свойствами. Их применяют для отливок ответственных деталей.
При испытании серого и высокопрочного чугунов определяют предел прочности при растяжении, изгибе и сжатии, а при испытании ковкого чугуна – предел прочности при растяжении, относительное удлинение и твердость.
При
маркировке серого и модифицированного
чугуна, например СЧ12-28, первые две цифры
обозначают предел прочности при растяжении,
последующие две – предел прочности при
изгибе. /2, стр. 325-326/
4.1.2 Основы получения
Чугун
получают в ходе доменного производства,
основанного на восстановлении железа
из его природного оксидов, содержащихся
в железных рудах, коксом при высокой
температуре. Кокс, сгорая, образует углекислый
газ. При прохождении через раскаленный
кокс он превращается в оксид углерода,
который и восстанавливает железо в верхней
части печи по обобщенной схеме: Fe2O3→Fe3O4→FeO→Fe.
Опускаясь в нижнюю горячую часть печи,
железо плавится в соприкосновении с коксом
и, частично растворяя его, превращается
в чугун. В готовом чугуне содержится около
93% железа, до 5 % углерода и небольшое количество
примесей кремния, марганца, фосфора, серы
и некоторых других элементов, перешедших
в чугун из пустой породы.
Рис.4-доменное
производство.
4.2 ПРОИЗВОДСТВО СТАЛИ
4.2.1 Общие сведения о стали
Сталь углеродистая обыкновенного качества.
Решающее влияние на механические свойства в углеродистых сталях оказывает содержание углерода (рис. 5). При увеличении содержания углерода повышаются прочность, твердость и износоустойчивость, но понижаются пластичность и ударная вязкость, а также ухудшается свариваемость.
Примесь фосфора вызывает хладноломкость, а примесь серы – красноломкость стали. Для различных марок стали допустимое содержание фосфора 0,04...0,09 %, а серы 0.04..Д07 %. Вредное влияние на свойства стали оказывает кислород: содержание его более 0,03% вызывает старение стали, а более 0,1 % – красноломкость. Примеси марганца и кремния в количестве 0,8...1 % не оказывают практически влияния на механические свойства углеродистых сталей. В стали, предназначенной для сварных конструкций, содержание кремния не должно превышать 0,12...0,25 %. Содержание азота повышает прочность и твердость стали и снижает пластичность.
Рис.5-влияние углерода на механические свойства отожженных сталей.
При обозначении марок стали могут быть указаны: группы, по которым сталь поставляется («А» – по механическим свойствам, «Б» – по химическому составу, «B» – по механическим свойствам и дополнительным требованиям по химическому составу); методу производства («М» – мартеновский и др.); дополнительные индексы («сп» – спокойная сталь, «пс» – полуспокойная Сталь, «кп» – кипящая сталь). В группе «А» индекс «М» часто опускается, но имеется в виду сталь мартеновская, а при отсутствии индексов «сп», «пс», «кп» имеется в виду сталь спокойная.
Спокойная сталь является более качественной, но по стоимости она на 12...15 % дороже кипящей. Полуспокойная сталь занимает по свойствам промежуточное положение между спокойной и кипящей сталью, но в результате и незначительного расхода раскислителей стоимость ее меньше, чем спокойной.
Механические характеристики стали зависят также от формы и толщины проката. Углеродистые стали обыкновенного качества применяют без термообработки. В таблице 1 приведены нормы на механические свойства стали углеродистой обыкновенного качества (группа А).
Табл.1
Марки
стали группы А |
Предел прочности при растяжении, МПа | Предел теку, чести, МПа | Относительное удлинение, % |
Ст0
Ст1сп, пс Ст2сп, пс Ст3сп, пс Ст3Гпс Ст4сп, пс Ст5Гпс Ст6сп, пс |
310
320...420 340...440 380...490 380...500 420...540 460...600 Не менее 600 |
–
– 200...230 210...250 210...250 240...270 260...290 300...320 |
20...30
31…34 29...32 23...26 23...26 21...24 17...20 12…15 |
Примечание: В стали марок Ст3Гпс и Ст5Гпс повышенное содержание марганца. /2, стр.318-320/
Сталь углеродистая качественная конструкционная.
Качественная конструкционная сталь выплавляется в мартеновских и электрических печах (спокойная, полуспокойная, кипящая).
В зависимости от химического состава эта сталь делится на две группы: I – с нормальным содержанием марганца и II – с повышенным содержанием марганца. Марки стали и требования к механическим свойствам стали I группы в состоянии нормализации приведены в таблице 2. В марке стали двузначные цифры означают среднее содержание углерода в сотых долях процента. Сталь в соответствии с требованиями может поставляться в термически обработанном состоянии (отожженная, нормализованная, высокоотпущенная).
Табл. 2
Сталь углеродистая качественная по ГОСТ 2050-74
Марки стали | Содержание углерода, % |
Предел прочности при растяжении, МПа | Предел текучести, МПа | Относительное удлинение, % |
08
кп, пс
10 кп, пс 15 кп, пс 20 кп, пс 25 – 30 – 35 – 40 – 45 – 50 – 60 – 70 – 80 – |
0,05...0,11
0,07...0,14 0,12...0,19 0,17...0,24 0,22...0,30 0,27...0,35 0,32...0,40 0,37...0,45 0,42...0,50 0,47...0,55 0,57...0,65 0,67...0,75 0,77...0,85 |
330
340 380 420 460 500 540 580 610 640 690 730 1100* |
200
210 230 250 280 300 320 340 360 380 410 430 950* |
35
31 27 25 23 21 20 19 16 14 12 9 6* |
Информация о работе Влияние углерода и постоянных примесей на свойства сталей