Влияние углерода и постоянных примесей на свойства сталей

Автор работы: Пользователь скрыл имя, 19 Сентября 2011 в 14:33, курсовая работа

Описание работы

Наука о металлах развивается широким фронтом во вновь созданных научных центрах с применением электронных микроскопов и другой современной аппаратуры, с использованием достижений рентгенографии и физики твердого тела. Все это позволяет более глубоко изучить строение металлов и сплавов и находить новые пути повышения механических и физико-химических свойств.

Содержание работы

1.Введение……………………………………………………………………….3

2.Общие сведения……………………………………………………………….5

2.1. Химические свойства………………………………………………………5

2.2.Физические свойства………………………………………………………..6

3.Атомно-кристаллическое строение металлов……………………………….8

4.Основы получения чугуна и стали…………………………………………...10

4.1.Получение чугуна…………………………………………………………...10

4.1.1Общие сведения…………………………………………………………....10

4.1.2Основы получения………………………………………………………....11

4.2.Производство стали………………………………………………………....12

4.2.1.Общие сведения о стали…………………………………………………..12

4.2.2Основы получения стали…………………………………………………..15

5.Механические свойства металлов……………………………………………19

5.1.Статистические испытания…………………………………………………19

5.2.Динамические испытания…………………………………………………...21

5.3.Усталостные (на выносливость) испытания………………………………..22

6.Влияние углерода и постоянных примесей на свойства сталей……………23

7.Заключение…………………………………………………………………….24

8.Список литературы……………………………………………………………25

Файлы: 1 файл

реферат на тему металлические изделия.doc

— 1.27 Мб (Скачать файл)

СОДЕРЖАНИЕ

 

1.Введение……………………………………………………………………….3

2.Общие сведения……………………………………………………………….5

2.1. Химические  свойства………………………………………………………5

2.2.Физические  свойства………………………………………………………..6

3.Атомно-кристаллическое  строение металлов……………………………….8

4.Основы получения чугуна и стали…………………………………………...10

4.1.Получение  чугуна…………………………………………………………...10

4.1.1Общие сведения…………………………………………………………....10

4.1.2Основы получения………………………………………………………....11

4.2.Производство  стали………………………………………………………....12

4.2.1.Общие сведения о стали…………………………………………………..12

4.2.2Основы получения  стали…………………………………………………..15

5.Механические  свойства металлов……………………………………………19

5.1.Статистические  испытания…………………………………………………19

5.2.Динамические  испытания…………………………………………………...21

5.3.Усталостные (на выносливость) испытания………………………………..22

6.Влияние углерода  и постоянных примесей на свойства  сталей……………23

7.Заключение…………………………………………………………………….24

8.Список литературы……………………………………………………………25 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      1 ВВЕДЕНИЕ 
 

           Металлы – наиболее распространенные и широко используемые материалы в производстве и в быту человека. Особенно велико значение металлов в наше время, когда большое их количество используют в машиностроительной промышленности, на транспорте, в промышленном, жилищном и дорожном строительстве, а также в других отраслях народного хозяйства./1, стр. 4/

          Термин «металл» произошёл от греческого слова métallon (от metalléuō – выкапываю, добываю из земли), которое означало первоначально копи, рудники (в этом смысле оно встречается у Геродота, 5 в. до н. э.). То, что добывалось в рудниках, Платон называл metalléia. В древности и в средние века считалось, что существует только 7 металлов: золото, серебро, медь, олово, свинец, железо, ртуть. По алхимическим представлениям, металлы зарождались в земных недрах под влиянием лучей планет и постепенно крайне медленно совершенствовались, превращаясь в серебро и золото. Алхимики полагали, что металлы – вещества сложные, состоящие из «начала металличности» (ртути) и «начала горючести» (серы). В начале 18 в. получила распространение гипотеза, согласно которой металлы состоят из земли и «начала горючести» – флогистона. М.В. Ломоносов насчитывал 6 металлов (Au, Ag, Cu, Sn, Fe, Pb) и определял металл как «светлое тело, которое ковать можно». В конце 18 в. А.Л. Лавуазье опроверг гипотезу Флогистона и показал, что металлы – простые вещества. В 1789 Лавуазье в руководстве по химии дал список простых веществ, в который включил все известные тогда 17 металлов (Sb, Ag, As, Bi, Co, Cu, Sn, Fe, Mn, Hg, Mo, Ni, Au, Pt, Pb, W, Zn). По мере развития методов химического исследования число известных металлов возрастало. В первой половине 19 в. были открыты спутники платины(Pt), получены путём электролиза некоторые щелочные и щёлочноземельные металлы, положено начало разделению редкоземельных металлов, открыты неизвестные металлы при химическом анализе минералов. В 1860-63 методом спектрального анализа были открыты Cs, Rb, Tl, In. Блестяще подтвердилось существование металлов, предсказанных Д. И. Менделеевым на основе его периодического закона. Открытие радиоактивности в конце 19 в. повлекло за собой поиски природных радиоактивных металлов, увенчавшиеся полным успехом. Наконец, методом ядерных превращений начиная с середины 20 в. были искусственно получены радиоактивные металлы, в частности трансурановые элементы.

           В конце 19-начале 20 в.в. получила физико-химическую основу металлургия- наука о производстве металлов из природного сырья .Тогда же началось исследование свойств металлов и их сплавов в зависимости от состава и строения/3, стр. 133/

           Основы современного металловедения были заложены выдающимися русскими металлургами П.П. Аносовым (1799–1851) и Д.К. Черновым (1839–1921), впервые установившими связь между строением и свойствами металлов и сплавов.

            П. П. Аносов заложил основы учения о стали, разработал научные принципы получения высококачественной стали, впервые в мире в 1831 г. применил микроскоп для исследования строения металлов.

           Д. К. Чернов продолжил труды П. П. Аносова. Он по праву считается основоположником металлографии – науки о строении металлов и сплавов. Его научные открытия легли в основу процессов ковки, прокатки, термической обработки стали.

            Открытые Д. К. Черновым критические точки в стали явились основой для построения современной диаграммы состояния системы железо – углерод.

            Классические труды «отца металлографии» Д. К. Чернова развивали выдающиеся русские ученые. Первое подробное описание структур железоуглеродистых сплавов было сделано А. А. Ржешотарским(1898). Дальнейшее развитие металловедение получило в работах видных отечественных ученых Н. И. Беляева, Н. С. Курнакова, А. А. Байкова, С. С. Штейнберга, А. А. Бочвара, Г. В. Курдюмова и др.

            Наука о металлах развивается широким фронтом во вновь созданных научных центрах с применением электронных микроскопов и другой современной аппаратуры, с использованием достижений рентгенографии и физики твердого тела. Все это позволяет более глубоко изучить строение металлов и сплавов и находить новые пути повышения механических и физико-химических свойств. Создаются сверхтвердые сплавы, сплавы с заранее заданными свойствами, многослойные композиции с широким спектром свойств и многие другие металлические, алмазные и керамико-металлические материалы /1, стр. 58/. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        2 ОБЩИЕ СВЕДЕНИЯ

 
 

        В строительстве обычно применяют не чистые металлы, а сплавы. Наибольшее распространение получили сплавы на основе черных металлов (~94%) и незначительное – сплавы цветных металлов (рис. 1) /2, стр.288/

         

рис. 1

           2.1 Химические свойства          

          В соответствии с местом, занимаемым в периодической системе элементов, различают металлы главных и побочных подгрупп. Металлы главных подгрупп (подгруппы а) называются также непереходными. Эти металлы характеризуются тем, что в их атомах происходит последовательное заполнение s-и p-электронных оболочек. В атомах металлов побочных подгрупп (подгруппы б), называемых переходными, происходит достраивание d- и f-оболочек, в соответствии с чем их делят на d-группу и две f-группы – лантаноиды и актиноиды. В подгруппы а входят 22 металла: Li, Na, К, Rb, Cs, Fr (I a); Be, Mg, Ca, Sr, Ba, Ra (II a); Al, Ga, In, Tl (III a); Ge, Sn, Pb (IV a); Sb, Bi (V a); Po (VI a). В подгруппы б входят: 1) 33 переходных металла d-группы [Сu, Ag, Аи (I б); Zn, Cd, Hg (II б); Sc, Y, La, Ac (III 6); Ti, Zr, Hf, Ku (IV б); V, Nb, Та, элемент с Z = 105 (V б); Сr, Mo, W (VI б); Mn, Тс, Re (VII б); Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt (VIII б)]; 2) 28 металлов f-группы (14 лантаноидов и 14 актиноидов).

          Электронная структура атомов некоторых d-элементов имеет ту особенность, что один из электронов внешнего уровня переходит на d-подуровень. Это происходит при достройке этого подуровня до 5 или 10 электронов. Поэтому электронная структура валентных подуровней атомов d-элементов, находящихся в одной подгруппе, не всегда одинакова. Например, Cr и Мо (подгруппа VI б) имеют внешнюю электронную структуру соответственно 3d54s1 и 4d55s1, тогда как у W она 5d46s2. В атоме Pd (подгруппа VIII 6) два внешних электрона «перешли» на соседний валентный подуровень, и для атома Pd наблюдается d10 вместо ожидаемого d8s2.

          Металлам присущи многие общие химические свойства, обусловленные слабой связью валентных электронов с ядром атома: образование положительно заряженных ионов (катионов), проявление положительной валентности (окислительного числа), образование основных окислов и гидроокисей, замещение водорода в кислотах и т.д. Металлические свойства элементов можно сравнить, сопоставляя их электроотрицательность [способность атомов в молекулах (в ковалентной связи) притягивать электроны, выражена в условных единицах]; элементу присущи свойства металла тем больше, чем ниже его электроотрицательность (чем сильнее выражен электроположительный характер).

         Если расположить металлы в последовательности увеличения их нормальных потенциалов, получим так называемый ряд напряжений или ряд активностей. Рассмотрение этого ряда показывает, что по мере приближения к его концу – от щелочных и щёлочноземельных металлам к Pt и Аи – электроположительный характер членов ряда уменьшается. Металлы от Li по Na вытесняют Н2 из Н2О на холоду, а от Mg по Тl – при нагревании. Все металлы, стоящие в ряду выше Н2, вытесняют его из разбавленных кислот (на холоду или при нагревании). Металлы, стоящие ниже Н2, растворяются только в кислородных кислотах (таких, как концентрирированная H2SO4 при нагревании или HNO3), a Pt, Аи – только в царской водке (Ir нерастворим и в ней).

          Металлы от Li до Na легко реагируют с О2 на холоду; последующие члены ряда соединяются с О2 только при нагревании, a Ir, Pt, Аи в прямое взаимодействие с О2 не вступают. Окислы металлов от Li no Al и от La no Zn трудно восстановимы; по мере продвижения к концу ряда восстановимость окислов увеличивается, а окислы последних его членов разлагаются на металлы и О2 уже при слабом нагревании. О прочности соединений металлов с кислородом (и др. неметаллами) можно судить и по разности их электроотрицательностей: чем она больше, тем прочнее соединение /3, стр. 133-134/.

          2.2Физические свойства

          Большинство металлов кристаллизуется в относительно простых структурах – кубических и гексагональных ЛГУ, соответствующих наиболее плотной упаковке атомов. Лишь небольшое число металлов имеет более сложные типы кристаллических решёток. Многие металлы в зависимости от внешних условий (температуры, давления) могут существовать в виде двух или более кристаллических модификаций.

         Электрические свойства. Удельная электропроводность металлов при комнатной температуре σ~10-6–10-4 ом-1 см-1, тогда как у диэлектриков, например, у серы, σ~10-17 ом-1 см-1. Промежуточные значения удельной электропроводности σ соответствуют полупроводникам. Характерным свойством металлов как проводников электрического тока является линейная зависимость между плотностью тока и напряжённостью приложенного электрического поля. Носителями тока в металлах являются электроны проводимости, обладающие высокой подвижностью. Согласно квантово-механическим представлениям, в идеальном кристалле электроны проводимости (при полном отсутствии тепловых колебаний кристаллической решётки) вообще не встречают сопротивления на своём пути. Существование у реальных металлов электросопротивления является результатом нарушения периодичности кристаллической решётки. Эти нарушения могут быть связаны как с тепловым движением атомов, так и с наличием примесных атомов, вакансий, дислокаций и др. дефектов в кристаллах. На тепловых колебаниях и дефектах (а также друг на друге) происходит рассеяние электронов.

         При нагревании металлов до высоких температур наблюдается «испарение» электронов с поверхности металлов (термоэлектронная эмиссия). Эмиссия электронов с поверхности металлов происходит также под действием сильных электрических полей примерно 107 в/см в результате туннельного просачивания электронов через сниженный полем потенциальный барьер. В металлах наблюдаются явления фотоэлектронной эмиссии, вторичной электронной эмиссии и ионно-электронной эмиссии. Перепад температуры вызывает в металлах появление электрического тока или разности потенциалов

        Тепловые свойства. Теплоёмкость металлов обусловлена как ионным остовом (решёточная теплоёмкость Ср), так и электронным газом (электронная теплоёмкость Сэ). Хотя концентрация электронов проводимости в металлах очень велика и не зависит от температуры, электронная теплоёмкость мала и у большинства металлов наблюдается только при температурах в несколько градусов кельвина. Теплопроводность металлов осуществляется главным образом электронами проводимости.

      Магнитные свойства. Переходные металлы с недостроенными f- и d-электронными оболочками являются парамагнетиками. Некоторые из них при определённых температурах переходят в магнитоупорядоченное состояние. Магнитное упорядочение существенно влияет на все свойства металлов, в частности на электрические свойства: в электросопротивление вносит вклад рассеяние электронов на колебаниях магнитных моментов. Гальваномагнитные явления при этом также приобретают специфические черты.

      Магнитные свойства остальных металлов определяются электронами проводимости, которые вносят вклад в диамагнитную и парамагнитную восприимчивости металлов, и диамагнитной восприимчивостью ионного состава. Магнитная восприимчивость X большинства металлов относительно мала (X ~ 10-6) и слабо зависит от температуры. 

           

      3 АТОМНО-КРИСТАЛЛИЧЕСКОЕ СТРОЕНИЕ МЕТАЛЛОВ 

      Исследование  структуры металла проводят путем  изучения макроструктуры с увеличением до 10 раз и без увеличения; микроструктуры с увеличением от 10 до 2000 раз на оптических микроскопах и до 100 000 раз на электронных микроскопах, атомной структуры – рентгенографическим анализом.

          Металлы представляют  собой кристаллические  тела с закономерным  расположением атомов в узлах пространственной решетки.

      

          Элементарный кубический кристалл: а – объемно-центрированный; б – гранецентрированный .рис 2

      Решетки состоят из ряда кристаллических  плоскостей, расположенных друг от друга на расстоянии нескольких нанометров (1 нм=10-9 м). Для железа эти расстояния 28,4 нм (α-железо) и 36,3 нм ( -железо).        Большинство металлов имеет пространственные решетки в виде простых геометрических фигур. Отдельные участки кристаллической решетки прочно связаны между собой в комплексы – зерна. Взаимное расположение зерен отдельных элементов и сплавов определяет структуру металлов и их свойства.

Информация о работе Влияние углерода и постоянных примесей на свойства сталей