Автор работы: Пользователь скрыл имя, 01 Декабря 2010 в 14:14, Не определен
Введение
Глава 1. Теоретические основы статистического изучения основных фондов
1.1.Предмет, метод и задачи статистического изучения основных фондов
1.2.Система показателей, характеризующих основные фонды
1.3.Статистические методы и их применение в изучении основных фондов
Глава 2. Анализ статистического изучения основных фондов
Глава 3. Статистический анализ основных фондов
Заключение
Список использованной литературы
4. Оценить адекватность и практическую пригодность построенной линейной регрессионной модели, указав:
а)
доверительные интервалы
а0: (-442.7878952; 377.1869463): для уровня надежности Р=0,95;а0: (-235.8061414; 170.2051925): для уровня надежности Р=0,683. а1: (1.962410588; 2.621816716): для уровня надежности Р=0,95; а1: (2.128860862; 2.455366443): для уровня надежности Р=0,683.
б) степень тесноты связи между признаками Х и Y;
Её можно определить по коэффициенту детерминации (см. табл. Регрессионная статистика): R-квадрат = 0.895595305. Это означает высокую степень тесноты связи признаков в уравнении регрессии, так как удовлетворяет условию R>0,7.
С помощью F - критерия Фишера можно определить значимость коэффициента детерминации R2.
FR = R2/(1- R2)*(n-m)/(m-1), где m – число групп областей. FR = (0,896/0,104)*6=51,69, что больше Fтабл=5,77 (к1=m-1, к2=n-m). Следовательно, коэффициент детерминации R2 значим, то есть зависимость между признаками X и Y регрессионной модели является статистически существенной, а значит, построенная модель в целом адекватна исследуемому процессу.
5.
Дать экономическую
а) коэффициента регрессии а1;
В нашей задаче коэффициент а1=2,292113652 (см. таблицы Регрессионная статистика) показывает, что результативный признак при изменении факторного увеличивается на данную величину.
б) коэффициента эластичности Кэ;
Данный
коэффициент показывает, на сколько
процентов изменяется в среднем
результативный признак при изменении
факторного на 1%. Кэ
= а1*(
/
) = 2,292*(1077,00/2435,81)=1,
в) остаточных величин i.
Значения остатков имеют как положительные, так и отрицательные отклонения от ожидаемого уровня анализируемого показателя. Экономический интерес представляют области России: Архангельская, Курская, поскольку в них степень износа отличается наибольшими положительными отклонениями. То есть в данных областях стоимость основных фондов в отрасли – строительство наибольшая. А также Орловская и Костромская, то есть области, требующие особого внимания (наибольшие отрицательные остатки).
6.
Найти наиболее адекватное
Построение
регрессионных моделей
1.Выделить
мышью диаграмму рассеяния,
2.Диаграмма => Добавить линию тренда;
3.Выбрать вкладку Тип, задать вид регрессионной модели – полином 2-го порядка;
4.Выбрать вкладку Параметры и выполнить действия:
1.Переключатель Название аппроксимирующей кривой: автоматическое/другое – установить в положение автоматическое;
2.Поле Прогноз вперед на – не активизировать;
3.Поле Прогноз назад на – не активизировать;
4.Флажок Пересечение кривой с осью Y в точке – не активировать;
5.Флажок Показывать уравнение на диаграмме – активизировать;
6.Флажок Поместить на диаграмму величину достоверности аппроксимации R2 – активизировать;
7.ОК;
8.Установить курсор на линию регрессии и щелкнуть правой клавишей мыши;
9.В появившемся диалоговом окне Формат линии тренда выбрать тип, цвет и толщину линии;
10.ОК;
11.Вынести уравнение и коэффициент R2 за корреляционное поле.
5.Действия 3 – 4 (в п.4 –шаги 1–11) выполнить поочередно для следующих видов регрессионных моделей: полином 3-го порядка, степенная, экспоненциальная.
Уравнения
регрессии и их графики
1.Теперь выберем наиболее адекватную регрессионную модель, то есть ту где больше коэффициент детерминации. В нашем случае это R2 =0,9096.
2.Выделить
диаграмму рассеяния,
3.Диаграмма => Добавить линию тренда;
4.Выбрать вкладку Тип и задать вид: полином 3-го порядка;
5.Выбрать вкладку Параметры:
1.Переключатель Название аппроксимирующей кривой: автоматическое/другое – установить в положение автоматическое;
2.Поле Прогноз вперед на – не активизировать;
3.Поле Прогноз назад на – не активизировать;
4.Флажок Пересечение кривой с осью Y в точке – не активировать;
5.Флажок Показывать уравнение на диаграмме – активизировать;
6.Флажок Поместить на диаграмму величину достоверности аппроксимации R2 – активизировать;
7.ОК.
Наиболее
адекватное уравнение регрессии
и его график
Заключение
В данной курсовой работе я рассмотрела тему «Статистика основных фондов», изучив предмет и методы данного раздела статистики, указав его показатели, а также статистические методы и их применение в изучении основных фондов. Всё это содержится в первой главе работы. Также я выполнила несколько расчётных задач, закрепив полученные данные. В аналитической части курсовой работы я освоила методики корреляционно-регрессионного анализа взаимосвязи социально-экономических явлений с применением компьютерных средств, так как изучение взаимосвязей явлений и процессов – одна из важнейших задач статистических исследований.
Данный метод позволяет:
Для этого я использовала табличный процессор Microsoft Excel и его надстройку Пакет анализа, которые предоставляют ряд программных средств для автоматизированного решения вышеперечисленных задач.
Список использованной литературы
1. Гусаров В.М. Статистика: Учебное пособие для вузов. – М.: ЮНИТИ – ДАНА,2001. с.340 – 348.
2. Практикум по статистике: Учебное пособие для вузов / Под ред. проф. В.М. Симчеры. – Москва, ЗАО «Финстатинфом», 1999. с. 6 - 12.
3. Практикум по статистике: Учебное пособие для вузов / Под ред. Я.С. Мелкумова, 2004. с. 60 - 63
4. Социально
– экономические показатели
5. Статистика: Учебник
/ Под ред. доктора