Автор работы: Пользователь скрыл имя, 14 Мая 2011 в 22:20, курс лекций
Понятие и виды ряда динамики. Основные показатели динамики и способы их расчета
где - среднее значение генеральной совокупности;
- среднее значение выборки.
Приведенные формулы характерны для случая, когда признак совокупности принимает множество различных значений. Однако в генеральной совокупности, а, следовательно, и в выборке изучаемый признак может принимать всего два альтернативных значения. В этом случае вместо среднего значения генеральной совокупности говорят о доле признака в генеральной совокупности , а вместо среднего значения выборки − о частости .
Долю признака в генеральной совокупности определяют по формуле:
где - количество интересующих значений признака в генеральной совокупности,
а частость признака в выборке по формуле:
где - количество интересующих значений признака в выборке.
Формула для определения предельной ошибки выборки, сформированной повторным способом отбора, имеет вид:
а для выборки, сформированной бесповторным способом отбора:
Определение с заданной вероятностью границ, в которых будет находиться доля признака в генеральной совокупности осуществляется по формуле:
Из четырех формул определения предельной ошибки выборки можно вывести формулы определения объема выборки, необходимого для получения результатов с заданной степенью точности. Они будут иметь вид:
Пример 9.1. Для изучения оснащения предприятия основными средствами было проведено 10 % выборочное обследование, в результате которого получены данные о распределении предприятий по среднегодовой стоимости основных средств.
Среднегодовая стоимость основных средств, млн.руб. | до 20 | 20 - 40 | 40 - 60 | свыше 60 |
Количество предприятий | 5 | 12 | 23 | 10 |
Определить:
1) с вероятностью 0,997 предельную ошибку выборочной средней и границы, в которых будет находиться среднегодовая стоимость основных средств всех предприятий генеральной совокупности;
2) с вероятностью 0,954 предельную ошибку выборки при нахождении доли и границы, в которых будет лежать удельный вес предприятий со стоимостью основных средств свыше 40 млн.руб.
Решение.
1)
Предположим, что приведенная
в исходных данных выборка
сформирована повторным
а границы, в которых будет находиться среднегодовая стоимость основных средств всех предприятий генеральной совокупности, определить, с учетом того что млн.руб., по формуле:
Если приведенная в исходных данных выборка сформирована бесповторным способом отбора, то для нахождения предельной ошибки выборки воспользуемся формулой:
а границы, в которых будет находиться среднегодовая стоимость основных средств всех предприятий генеральной совокупности, определим по формуле:
2)
Предположим, что приведенная
в исходных данных выборка
сформирована повторным
а границы, в которых будет находиться доля предприятий со стоимостью основных средств свыше 4 млн.руб., определить по формуле:
Если приведенная в исходных данных выборка сформирована бесповторным способом отбора, то для нахождения предельной ошибки выборки воспользуемся формулой:
а границы, в которых будет находиться доля предприятий со стоимостью основных средств свыше 4 млн.руб., определить по формуле:
Тема 10. Корреляционно-регрессионный анализ
10.1. Одной из основных задач статистики является выявление взаимосвязи между изучаемыми социально-экономическими явлениями.
Различают два основных вида связи: функциональную и стохастическую. При функциональной связи, каждому значению признака соответствует одно единственное значение признака . При стохастической связи, каждому значению признака соответствует множество значений признака . Частным случаем стохастической связи является корреляционная связь, при которой, каждому значению признака соответствует одно единственное среднее значение признака . При этом называют факторным признаком, а − результативным признаком.
В теории статистики изучаются в основном стохастические и корреляционные зависимости между признаками. Корреляционный анализ предусматривает определение тесноты связи между двумя или более признаками с помощью специальных коэффициентов. Регрессионный анализ позволяет установить зависимость между рассматриваемыми признаками на основе построения регрессионной модели (уравнения регрессии).
10.2. Количественной характеристикой корреляционной связи является линия регрессии. Линия регрессии представляет собой функцию, устанавливающую зависимость результативного признака от факторного признака . По форме линия регрессии бывает линейной и нелинейной (криволинейной), а по направлению связи − прямой и обратной. При прямой связи с увеличением значения признака увеличивается и значение признака и, наоборот. При обратной связи с увеличением значения признака значение признака уменьшается и, наоборот.
Как и любую функцию, линию регрессии можно задать аналитически, т.е. уравнением. В статистике наиболее часто используется линейная форма представления линии регрессии. Линейное уравнение регрессии при парной корреляции имеет вид:
где - теоретическое значение результативного признака;
- значение факторного признака;
, - коэффициенты, значения которых определяются по методу наименьших квадратов из системы двух уравнений следующего вида:
Коэффициент называется коэффициентом регрессии. Он определяет, на какую величину изменится значение результативного признака при изменении значения факторного признака на единицу.
Для определения, насколько процентов изменится результативный признак при изменении факторного на 1 %, рассчитывают коэффициент эластичности по формуле:
Построив уравнение регрессии, можно для каждого значения факторного признака определить соответствующее ему значение результативного признака .
Получив однофакторную модель (уравнение регрессии), необходимо проверить насколько точно она отражает линейную зависимость результативного признака от факторного признака , т.е. определить тесноту линейной связи между признаками.
Для
определения тесноты связи
где - теоретическая дисперсия;
- эмпирическая дисперсия, т.е. дисперсия признака полученного экспериментальным (опытным) путем.
Коэффициент детерминации принимает значения в интервале от 0 до 1. Чем ближе значение коэффициента детерминации к единице, тем более точно построенное уравнение регрессии описывает линейную корреляционную связь между признаками, и, наоборот, чем ближе значение коэффициента детерминации к нулю, тем менее точно уравнение регрессии описывает линейную корреляционную связь. Коэффициент детерминации, принимающий значение равное нулю, свидетельствует о полном отсутствии линейной корреляционной зависимости между признаками. Коэффициент детерминации, принимающий значение равное единице, соответствует ситуации, при которой наблюдается функциональная линейная зависимость между признаками.
Тесноту линейной связи между признаками можно проверить, рассчитав линейный коэффициент корреляции по формулам:
где , - среднее квадратическое отклонение соответственно признаков и .
Линейный коэффициент корреляции принимает значение в интервале от -1 до +1 и, в отличие от коэффициента детерминации, характеризует не только тесноту линейной связи между признаками, но и ее направление. Если значение коэффициента положительное, то связь прямая, а если − отрицательное, то связь обратная. Линейный коэффициент корреляции равный нулю характеризует ситуацию, при которой полностью отсутствует линейная связь между признаками, а равный единице соответствует функциональной линейной связи признаков.
Пример 10.1. По данным о среднегодовой стоимости основных средств и объеме валовой продукции, построить уравнение регрессии и рассчитать показатели, характеризующие тесноту связи.
Среднегодовая
стоимость
основных средств, млн.руб. |
Объем валовой
продукции,
млн.руб. |
100
200 300 400 500 600 700 800 900 1000 |
200
250 310 310 400 560 520 600 600 700 |
Решение.
Сначала необходимо выделить факторный и результативный признаки. В рассматриваемом примере факторным признаком будет «Среднегодовая стоимость основных средств» , а результативным – «Объем валовой продукции» .
Для построения уравнения регрессии заполняется вспомогательная таблица: