Роль тонкопленочной технологии в производстве интегральных схем

Автор работы: Пользователь скрыл имя, 07 Июня 2012 в 11:01, реферат

Описание работы

Несмотря на малый срок своего существования, взаимосвязь микроэлектроники с другими областями науки и техники обеспечила необычайно высокие темпы развития этой отрасли и существенно сократила время для промышленной реализации новых идей. Этому способствовало также возникновение своеобразных обратных связей между разработкой интегральных схем, являющихся базой автоматизации производства и управления, и использованием этих разработок для автоматизации самого процесса проектирования, производства и испытаний интегральных схем .

Содержание работы

Введение
Роль тонкопленочной технологии в производстве интегральных схем
Тонкопленочная металлизация полупроводниковых приборов и интегральных схем
Методы осаждения пленок
Факторы, влияющие на свойства тонких пленок
Тонкопленочные резисторы
Тонкопленочные конденсаторы

Файлы: 1 файл

работа оля.docx2.docx

— 53.76 Кб (Скачать файл)

 

При изготовлении полупроводниковых  приборов и ИС для получения омических контактов к кремнию, меж соединений и контактных площадок, а также электродов затвора МОП структур широкое распространение  получили  пленки  алюминия, что обусловлено следующими достоинствами этого металла: низкой стоимостью Аl и возможностью  использования  для всех процессов металлизации одного металла, что значительно упрощает и удешевляет технологию и предотвращает возникновение гальванических эффектов; высокой электропроводностью пленок Аl, близкой к электропроводности объемного материала; легкостью испарения Аl в вакууме из вольфрамовых тиглей и электронно-лучевых испарителей; высокой адгезией А1 к кремнию и его окислам; низкоомностью контакта Аl с кремнием р- и n-типов проводимости; заметной растворимостью кремния в Аl с образованием твердого раствора, почти не уменьшающего электропроводности; отсутствием в системе Аl—Si химических соединений; химическим взаимодействием А1 с Si02, частично остающимся на контактных площадках; химической стойкостью А1 в окислительной среде и радиационной стойкостью; легкостью проведения фотолитографических операций для получения конфигурации проводящих дорожек с использованием травителей, не реагирующих с кремнием и двуокисью кремния; хорошей пластичностью Аl и устойчивостью к циклическим изменениям температуры.

Величина зерен осаждаемых пленок Аl существенно зависит от скорости испарения и температуры подложек. Чем больше величина зерна и чем более совершенна кристаллическая структура пленки, тем меньше ее удельное сопротивление, меньше сказывается эффект электромиграции и как следствие токоведущие дорожки, и омические контакты имеют больший срок службы. Ориентированный рост пленок Аl на не окисленных поверхностях кремния в плоскости (111) наблюдается при скоростях осаждения около 3 • 10-2 мкм • с-1 и температуре подложки 200—250°С.

Для получения столь больших  скоростей осаждения пленок чаще всего используются электронно-лучевые испарители. При этом степень совершенства кристаллической структуры пленок может неконтролируемо изменяться вследствие дополнительного радиационного нагрева подложек, величина которого зависит как от мощности испарителя, так и от материала подложки и толщины осаждаемой пленки. Неконтролируемые изменения в структуре пленки возникают также из-за наличия заряженных частиц в молекулярном пучке испаряемых паров Аl.

Концентрация заряженных частиц тем выше, чем больше ток  эмиссии катода и больше скорость испарения. Одним из существенных недостатков пленок чистого Аl является перенос вещества в результате электродиффузии (дрейфа ионов материала вдоль проводника, ее ли на концах последнего имеется разность потенциалов). Скорость перемещения ионов является функцией температуры и увеличивается с ростом последней. Помимо электродиффузии,  возможна диффузия атомов металла в результате разности температур на концах проводника. Если Аl осаждается на окисел кремния, то это вызывает плохой отвод тепла, появление «горячих» центров на проводящих дорожках и как следствие значительные градиенты температуры. Электромиграция А1 при плотностях тока, меньших, чем для других металлов, приводит к появлению пустот в пленке (эффект Киркендалла).

Поскольку электродиффузия  является активационным процессом, то она существенно зависит от состояния поверхности границы зерен. Уменьшение протяженности границ за счет увеличения размеров зерна и подбор материала защитного покрытия могут существенно увеличить энергию активации и как следствие время наработки на отказ. Значительного увеличения времени наработки на отказ можно достичь за счет добавки к алюминию примесей меди, магния, хрома, а также окиси алюминия.

После нанесения пленки А1 и получения требуемой конфигурации токоведущих дорожек производят вплавление А1 в кремний при температуре 500—550°С для получения низкоомного контакта. Миграция избыточного кремния на токоведущих дорожках, прилегающих к контактным подложкам, вызывает шелушение А1 и отказыет ИС. Для предотвращения этого необходимо при испарении А1 вводить в него около 2 масс. % кремния. Добавка кремния в контактные площадки из А1 уменьшает миграцию кремния из неглубоко залегающего эмиттерного слоя (около 1 мкм), что существенно увеличивает быстродействие ИС на биполярных транзисторах и предотвращает закорачивание в ИС неглубоко залегающих эмиттерных переходов.

Для предотвращения миграции кремния в пленку А1 в качестве промежуточного слоя может быть использована пленка титана. Применение метода создания омических контактов с подслоем титана в быстро действовавших ИС позволило в 20 раз увеличить время наработки на отказ. Помимо титана, может использоваться подслой платины или палладия с образованием силицида платины или силицида палладия.

Наряду с ранее перечисленными достоинствами металлизация алюминием обладает рядом существенных недостатков, важнейшими из которых являются следующие: малая величина энергии активации атомов А1, вызывающая электромиграцию при плотностях тока примерно 106 А/см2 и повышенных температурах, в результате чего появляются пустоты в пленках; возможность короткого замыкания через диэлектрик в многоуровневых системах металлизации вследствие образования острых выступов на плевке в результате электромиграции и рекристаллизации А1; опасность гальванической коррозии Аl при одновременном использовании других металлов;    большая скорость диффузии А1 по границам зерен, не допускающая использования приборов с металлизацией А1 при температурах более 500°С; интенсивное химическое взаимодействие А1 с двуокисью кремния при температуре около 500°С; низкая точка плавления в эвтектике систем алюминий — кремний около 577°С; большое различие (в 6 раз) коэффициентов термического расширения А1 и 51; мягкость А1 и, следовательно, невысокая механическая прочность пленок; невозможность присоединения выводов с помощью пайки; высокое пороговое напряжение в МОП структурах в связи с большой работой выхода.

Из-за перечисленных недостатков  алюминиевая металлизация не применяется в ИС и транзисторах с мелкими эмиттерными переходами, а также в МДП ИС для создания затворных электродов. Для этой цели применяют, однослойные и  многослойные системы из различных металлов (в том числе А1 для получение верхнего слоя).2

Наиболее подходящими  материалами являются вольфрам и  молибден. В частности, вольфрам имеет практически одинаковый с кремнием ТКС, хороший омический контакт к кремнию р- и n- типов проводимости, малое (в 2,5 раза) отличие от алюминия по электропроводности, самое высокое из всех металлов значение энергии активации при самодиффузии, высокую температуру плавления эвтектики с кремнием, химическую инертность на воздухе и в водном растворе плавиковой кислоты, а также высокую твердость, что исключает возможность появления царапин на пленке.

Благодаря высокой температурной  стойкости W его можно использовать для многоуровневой металлизации, чередуя слои двуокиси кремния с W. При термообработке на поверхности пленки не образуются холмики и нет опасности короткого замыкания между токоведущими дорожками в многослойной металлизации. Кроме того, пленки W (так же как и пленки Мо) являются металлургическим барьером, препятствующим образованию межкристаллической структуры кремния и алюминия.

Недостатком металлизации W является трудность получения  пленок  (для чего обычно используется пиролиз гексофторида вольфрама) и их травления (в щелочном растворе ферроцианида). Оба эти процесса сложны и проводятся с использованием  токсичных веществ. Кроме того, непосредственно к вольфраму невозможно подсоединить внешние выводы, поэтому поверх него на контактные площадки и наносят какой-либо другой металл (Рt, Ni, Аи, Си, А1 и др.).

При изготовлении ИС СВЧ  диапазона, ИС специального назначения, а также в гибридной технологии применяют металлизацию, состоящую из нескольких слоев тонких  металлов. При этом обычно первый (нижний) слой металла должен обладать высокой адгезией как к кремнию, так и к двуокиси кремния и одновременно иметь малые значения коэффициентов растворимости и диффузии в этих материалах. Этим требованиям удовлетворяют такие металлы, как хром, титан, молибден, а также силицид платины. При двухслойной металлизации второй (верхний) слой металла должен иметь высокую электропроводность и обеспечивать приварку к нему проволочных выводов. Однако в некоторых системах (таких, как Сг-Аu, Тi-Аu или Сг-Сu) контакты при термообработке теряют механическую прочность в результате образования на их границе интерметаллических соединений. Кроме того, верхний металл диффундирует через нижележащий слой в кремний, что снижает механическую прочность соединения и изменяет контактное сопротивление. Для устранения этого явления обычно используют третий слой металла, который является барьером, препятствующим взаимодей:твию верхнего слоя металлизации с кремнием. Так, например, в тройной системе Тt-Рl-Аu, которая применяется при изготовлении балочных выводов, слой Рt толщиной около 5Х10-2 мкм служит барьером против диффузии А1 в S1.

Помимо этого для балочных выводов в МДП ИС применяются  системы Сг-Аg-Аu, Сг-Аg-Рt, Рd-Аg-Аu, в которых роль барьера выполняет пленк а серебра. Для гибридных ИС и полосковмх линий ИС СВЧ диапазона применяются системы Сг-Сu и Сг-Сu-Сг.

Увеличение плотности  размещения элементов на кристалле потребовало применения многоуровневой металлизации. На рис. 1 показана последовательность изготовления двухуровневой металлизации в системе А1-А120з-А1, которая применяется в приборах с зарядовой связью.

Сравнительно новым изолирующим  материалом для многоуровневой металлизации является полиимид, с помощью которого получают пятиуровневую металлизацию БИС на МДП транзисторах.3

 

 

  1. Методы осаждения пленок

 

Как правило, выбор метода осаждения осуществляется уже после  выбора материала. Однако в ряде случаев  предпочтение оказывается определенному  методу осаждения, особенно если он хорош при массовом производстве. В любом случае перед тем, как сделать окончательный выбор, необходимо ответить на три вопроса: согласуется ли применяемый метод с данным материалом? Какова возможность управления процессом? Какова стоимость применения этого метода?

 

1) Напыление в вакууме.  Этот метод наиболее широко  используется при напылении пленок  и подходит для большинства  материалов. Исключение составляют  тугоплавкие металлы и такие  материалы, как окись олова,  которая при испарении может  разлагаться. Основными проблемами, возникающими при реализации  этого метода, является сильная  зависимость количества примесей  от условий напыления и трудность  получения пленки равномерной  толщины, имеющей сравнительно  большую площадь. Эти проблемы  тесно связаны со стоимостью  получения пленки, поскольку увеличение  стоимости определяется получением  за один технологический цикл  пленки большей площади. Если  скорость напыления не слишком  высока, то контроль за сопротивлением пленки осуществляется сравнительно легко. В настоящее время уже созданы промышленные установки для осаждения методом напыления в вакууме. Большинство из них является установками дискретного типа; они не могут осуществлять процесс непрерывного напыления, поскольку трудно восполнять испаряемый материал не нарушая вакуума. В случаях, когда требования к допустимым отклонениям позволяют для получения линейных размеров резистора использовать маски, метод напыления оказывается предпочтительным, так как перемещение маски в вакууме не представляет трудной проблемы.

 

2) Катодное распыление. Этот  метод приемлем для тугоплавких  металлов (таких, как тантал) и  сплавов (таких, как нихром), когда  в процессе напыления требуется  осуществлять точный контроль. Во  время катодного распыления существует  большая опасность попадания  примесей, чем при напылении. Введение  таких методов, как распыление  со смещением и газопоглощающее распыление, значительно уменьшает эту опасность. Контроль сопротивления во время распыления затруднен из-за взаимодействия плазменного разряда. В то же время контроль толщины пленки по времени осаждения легче проводить при процессе катодного распыления. Одной из основных причин, мешающих применять этот метод, является то, что необходимый для распыления образец не всегда может иметь линейные размеры, достаточные для изготовления катода. В промышленных установках использование больших катодов не представляет больших трудностей. Метод катодного распыления очень удобен для применения в установках с непрерывным процессом осаждения, поскольку в этом случае проблемы восполнения вещества катода не существует. Использование контактных масок при катодном распылении затруднено. Температуры подложек сравнимы с температурами, которые необходимо поддерживать при методе напыления в вакууме, а контроль за температурами подложек в этом случае осуществлять значительно труднее чем при методе напыления в вакууме.

Информация о работе Роль тонкопленочной технологии в производстве интегральных схем