Автор работы: Пользователь скрыл имя, 22 Декабря 2011 в 14:09, курсовая работа
Заданы три приёмника электрической энергии со следующими параметрами: Z 1 = -j65 Ом, Z 2 = 14+j56 Ом, Z 3 =56- j23 Ом. Рассчитать режимы работы электроприёмников при следующих схемах включения:
1.Присоединить приёмники последовательно к источнику с напряжением U = 300 В. Определить полное сопротивление цепи Z, ток I, напряжения на участках, угол сдвига фаз, мощности участков и всей цепи, индуктивности и ёмкости участков. Построить топографическую векторную диаграмму цепи.
Ip2 = I2 * Sinφ2 = 5.2 * 0,9705 = 5.05 A;
Ia3 = I3*Cosj3 = 4.96*0.9249 = 4.59 A.
Ip3 = I3*Sinj3 = 4.96*(- 0.38) = - 1.88 A.
Активная и реактивная составляющие тока в неразветвлённой части цепи:
Ia = Ia2 + Ia3 = 1.25+4.59 = 5.84 A.
Ip = Ip1 + Ip2 + Ip3 = - 4.62+5.05 – 1.88 = - 1.45 A.
Полный ток в неразветвлённой части цепи:
I = = = 6.02 A.
Угол сдвига фаз на входе цепи:
Sinφ = IP / I = - 1.45/6.02 = - 0.2409; φ = -13.940; Cosφ = 0.9706.
Активные, реактивные и полные мощности ветвей:
. QC1 = I12 *XC1= 4.622 *65 = 1387 вар.
S1 = U*I1 = 300*4.62 = 1387 B*A.
P2 = I22 * R2 = 5.22* 14 = 379 Вт.
QL2 = I22 * XL2 = 5.22 * 56 =1514 вар.
S2 = U * I2 = 300 * 5.2 =1560 В*А.
P3 = I32*R3 = 4.962*56 = 1378 Bт
QC3 = I32 * XC3 = 4.962 * 23 =566 вар.
S2 = U * I2 = 300 *4.96 = 1488 В*А
Активные, реактивные и полные мощности всей цепи:
P = P2 + P3 = 379 + 1378 =1757 Вт.
Q = - QC1 + QL2 - QC3 = - 1387 +1514 -566 = - 439 вар.
S = = = 1811 В*А, или
S = U * I = 300*6.02 = 1806 В*А.
P = S * Cosφ = 1806 * 0,9706 = 1753 Вт.
Q = S * Sinφ = 1806*(- 0.2404) = - 434 вар.
Для построения векторной диаграммы задаёмся масштабами напряжений MU = 25 В/см и токов MI = 0.5 А/см. Векторную диаграмму начинаем строить с вектора напряжения, который откладываем вдоль горизонтальной положительной оси. Векторная диаграмма токов строится с учётом того, что активные токи Ia2 и Ia3 совпадают по фазе с напряжением, поэтому их векторы параллельны вектору напряжения; реактивный индуктивный ток Ip2 отстает по фазе от напряжения, и его вектор строим под углом 900 к вектору напряжения в сторону отставания; реактивные емкостные токи Ip1 и Ip3 опережают по фазе напряжение, и их векторы строим под углом 90° к вектору напряжения в сторону опережения. Вектор тока в неразветвлённой части цепи строим с начала построения в конец вектора емкостного тока Ip3. Векторная диаграмма построена на рисунке 4.
3 Расчёт сложных цепей переменного тока символическим методом
Электрическая
схема цепи и комплексная схема
замещения представлены на рисунке
5а и б соответственно.
Намечаем в независимых контурах заданной цепи, как показано на рисунке 5б, контурные токи IK1 и IK2 – некоторые расчётные комплексные величины, которые одинаковы для всех ветвей выбранных контуров. Направления контурных токов принимаются произвольно. Для определения контурных токов составляем два уравнения по второму закону Кирхгофа:
Подставляем данные в систему:
IK1*(- j65+14+j56) – IK2*(14+j56) = 230
-IK1*(14+j56) +IK2 *(14+j56+56 – j23) = j240-230
IK1*(14-j9) – IK2*(14+j56) = 230
-IK1*(14+j56) + IK2*(70+j33) = -230+ j240
Решаем
систему с помощью
=1277-j168+2940– j1568=4217-j1736
Частные определители :
= = 16100+j7590–16660-j9520= -560–j1930.
=-1060+j5430+3220+j12880 = 2160+j18310
Определяем контурные токи:
IK1 = = = 0.0476-j0.438 A.
IK2 = = = - 1.09+ j3.89 A.
Действительные токи в ветвях цепи определяем как результат наложения контурных токов:
I1 = IK1 = 0.0476 – j0.438 = 0.441 A
I2 = IK1-IK2 = 0.0476.- j0.438+1.09- j3.89 = 1.14 – j4.33 = 4.48 A
I3 = IK2 = -1.09 + j3.89 = 4.04 A.
Составляем уравнение баланса мощностей в заданной электрической цепи. Определяем комплексные мощности источников:
SE2 = E2* =230(1.14+j4.33) = 262+j996=1030 B*A
SE23= E3* = j240*(-1.09 – j3.89) = 912 – j262 = 949 B*A
Определяем комплексные мощности приёмников электрической энергии:
S1 = I12*Z1 =0.4412*( – j65) = – j12.6 =12.6 B*A
S2 = I22*Z2 = 4.482*(14+j56) = 281+j1124=1159 B*A
S3 = I32*Z3 = 4.042*(56 – j23) = 914– j375 =988 B*A.
Уравнение баланса комплексных мощностей!
SЕ1 + SE2 = S1 + S2 + S3;
262+j996+912-j262 = – j12.6+281+j1124+914– j375
1174+ j734 @ 1182+ j749; 1385 @ 1400
Относительная и угловая погрешности незначительны.
Для построения векторной диаграммы задаёмся масштабами токов MI = 0.25 А/см и ЭДС ME = 50 В/см. Векторная диаграмма в комплексной плоскости построена на рисунке 6.
Схема заданной цепи изображена на рисунке 7.
Определяем систему фазных напряжений генератора. Фазное напряжение:
UФ = Uл/ = 380/1,73=220 В.
Комплексные фазные напряжения генератора:
UA = UФ = 220 B
UB = UAe-j120 = 220e-j120 = –110 – j191 B
UC = UAej120 = 220ej120 = –110 + j191 B
Определяем полные проводимости фаз приёмника:
YA = = j0,01538 См.
YB = = 0.0042-j0.0168 См.
YC = = 0.0153+j0.00628Cм.
YN= = = j0.03125 См.
Узловым напряжением является в данном случае напряжение смещения нейтрали, которое определяется по формуле:
UN=
= (j3.38-3.67+j1.05-2.88+j2.23)/
Определяем фазные напряжения на нагрузке:
UA/ = UA – UN = 220- (67+j218) = 153-j218 = 266 B.
UB/ = UB – UN = (–110-j191) - (67+j218) = -177-j409 =446 B.
UC/ = UC–UN=(–110+j191) - (67+j218) = -177 – j27 = 179 B.
Определяем токи в фазах нагрузки:
IA = UA/*YA = (153-j218)*(j0.01538) = 3.35+j2.35 = 4.1 A.
IB = UB/*YB = (-177-j409)*(0.0042-j0.0168) = -7.61+j1.26 =7.72 A.
IC=UC/*YC= (-177 – j27)*(0.0153+j0.00628)=- 2,53–j1,52= 2,96 A.
IN = UN*YN = (67+j218)*j0.03125 = - 6,8 + j2,09 = 7,12*
Проверяем правильность определения токов по первому закону Кирхгофа для точки N’:
3.35+j2.35 -7.61+j1.26 - 2,53 – j1,52 @ - 6,8 + j2,09;
- 6,79+j2.09 @ - 6,8 + j2,09.
Определяем комплексные мощности фаз и всей цепи:
SA = IA2 * Z1 = 4,12*(-j65) = -j1092=1092 B*A.
SB = IB2 * Z2 = 7,722*(14+j56) = 834+j3338 =3440 B*A
SC = IC2 * Z3 = 2,962*(56-j23) = 491 – j 202 = 530 B*A.
S= SA + SB + SC = -j1092+ 834+j3338+ 491 – j 202 = 1325+j2044 =
= 2436 B*A.
Для
построения векторной диаграммы
задаёмся масштабами токов MI = 1 А/см
и напряжений MU = 40 B/см. Векторная
диаграмма на комплексной плоскости построена
на рисунке 8.
Схема заданной цепи изображена на рисунке 9
В данном случае линейные напряжения генератора являются фазными
напряжениями
нагрузки:
UAB = UЛ = 380 В.
UBC = 380 = -190-j329 B.
UCA = 380 = -190+j329 B.
Определяем систему фазных токов нагрузки:
IAB = = = j5,85 = 5,85 A
IBC = = = -6,32+j1,81 = 6,58 A
ICA = = = -4,96+j3,83 = 6,27 A
Систему линейных токов определяем из соотношений:
IA = IAB – ICA = j5,85+4,96-j3,83 = 4,96+j2,02 = 5,36 A
IB = IBC – IAB = -6,32+j1,81-j5,85 = -6,32-j4,04 = 7,5 A
IC = ICA – IBC = -4,96+j3,83+6,32-j1,81 = 1,36+j1,92 =2,35 A
Определяем мощности фаз приемника:
SAB =IAB2*Z1 = 5,852*(-j65) = -j2224 = 2224 B*A.
Информация о работе Расчет линейных электрических цепей переменного тока