Нелинейные диэлектрики и их свойства

Автор работы: Пользователь скрыл имя, 09 Июня 2015 в 20:36, реферат

Описание работы

Сегнетоэлектриками называют вещества, обладающие спонтанной (самопроизвольной) поляризацией, направление которой может быть изменено с помощью внешнего электрического поля.
Характерные особенности таких материалов при t < θ относятся:
Наличие доменной структуры;
Диэлектрический гистерезис и остаточная поляризованность после снятия поля;

Файлы: 1 файл

радиоматериалы.docx

— 42.77 Кб (Скачать файл)

 

 

 

 

ГУМРФ им. ад. С.О. Макарова

 

 

 

 

 

Реферат на тему

«Нелинейные диэлектрики и их свойства»

 

 

 

 

 

 

Выполнила курсантка РТФ 141 группы

Полунина Анастасия Леонидовна

К занятию по радиоматериалам

Преподаватель:

Овчинников Иван Григорьевич

 

 

 

 

 

 

Санкт-Петербург, 2015

 

 

 

1. Введение

 

Сегнетоэлектриками называют вещества, обладающие спонтанной (самопроизвольной) поляризацией, направление которой может быть изменено с помощью внешнего электрического поля.

Характерные особенности таких материалов при t < θ относятся:

  1. Наличие доменной структуры;
  2. Диэлектрический гистерезис и остаточная поляризованность после снятия поля;
  3. Наличие изменений ε и tg δ под воздействием температуры, переменного поля и при наложении постоянного поля на переменную составляющую;
  4. Появление в поляризованном материале пьезоэлектрических свойств.

Этот процесс, называемый переполяризацией, сопровождается диэлектрическим гистерезисом. Сегнетоэлектрики во многих отношениях являются электрическим аналогами ферромагнетиков, в которых намагниченность I может быть обращена магнитным полем H. Однако по своей микроскопической природе сегнетоэлектрики и ферромагнетики совершенно различны.

Сегнетоэлектрики отличаются большой диэлектрической проницаемостью, высоким пьезомодулем, наличием петли диэлектрического гистерезиса, интересными электрооптическими свойствами, и поэтому широко применяется во многих областях современной техники: радиотехнике, электроакустике, квантовой электронике и измерительной технике.

Сегнетоэлектрики обладают интересными электрическими свойствами; во многих твердых телах силы связи носят главным образом электрический характер, и тот факт, что в сегнетоэлектриках эти силы могут проявляется весьма ярко, существенно облегчает их изучение, 

В термине «сегнетоэлектрики» нашел свое отражение тот факт, что первые сегнетоэлектрические свойства были обнаружены у сегнетовой соли. Позднее, однако, выяснилось, что сегнетова соль является не типичным сегнетоэлектрическим кристаллом. 

Сегнетоэлектрики являются твердыми телами, причем все они неметаллы. Свойства сегнетоэлектриков проще всего изучать, если вещество находится в монокристаллическом состоянии. 

Изучение свойств ферромагнетиков, известных с глубокой древности, началось примерно с 1600г; в дальнейшем исследования Вебера и Эвинга привели уже в 1907г к известной теории Вейса. Сегнетоэлектричество же было открыто лишь в 1921г Валашеком в сегнетовой соли. В настоящее время известно уже более 700 веществ, обладающих сегнетоэлектрическими свойствами. 

Тремя наиболее яркими особенностями сегнетоэлектриков являются обратимая поляризация, «аномальные» свойства и нелинейности. Большинство сегнетоэлектриков перестает быть сегнетоэлектриками выше некоторой температуры ТK, называемой температурой перехода. Аномальное поведение вблизи ТK, вероятно не менее важно, чем обратимая поляризация, но оно не является достаточным определением сегнетоэлектрика. При температуре ТK диэлектрическая проницаемость резко возрастает до весьма больших значений; именно эти большие значения в окрестности ТK называют аномальными значениями.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Основная часть

2.1 Получение керамики

 

Слово «керамика» говорит о том, что это глиносодержащие материалы, но в настоящее время сюда входит ряд химических соединений, процесс получения керамических материалов из которых идет по методу порошковой металлургии, но несколько изменена последовательность этапов:

1-й этап —тонкое измельчение входящих материалов до порошков. Этот процесс обычно осуществляется в шаровых мельницах.

2-й этап — пластификация массы. Вводят пластификаторы, которые бывают водорастворимые и расплавимые (поливиниловый спирт, парафин). Получают формовочный полуфабрикат.

3-й этап — формовка. Прессование в штампах.

4-й этап — отжиг. Низкотемпературный и высокотемпературный отжиг. При температуре больше 1300°С происходит выгорание пластификаторов. Выходят изделия с заданной формой и размерами.

Все керамические материалы имеют следующие фазы:                     

Кристаллическая фаза. Образуется при спекании керамики при взаимодействии глинозема с кварцевым песком. При этом образуются химические соединения или твердые растворы. Эта фаза формирует основные свойства керамики: механические свойства, диэлектрическую прочность, ТКЛР.                     

Стеклолитная фаза представляет собой прослойки стекла, связывающие между собой кристаллическую фазу. Такие прослойки образуются при расплавлении полевого шпата, при изготовлении керамики. Эта фаза формирует технологические свойства керамики: пористость, гигроскопичность; некоторые виды керамик (радиофарфор) не содержат стеклолитной фазы.                     

Газовая фаза — газы в закрытых порах. Количество их зависит от способа обработки керамической массы. Приводит к ухудшению свойств.

Сегнетоэлектрические керамики широко используются в технике. Рассмотрим процесс получения керамики на примере титаната бария. Титанат бария вместе с добавками (если они нужны) сначала размельчают, после чего смесь выдавливают в форму и прессуют, причем это можно сделать как со связующим веществом, так и без него. Затем следует процесс обжига при высокой температуре, например 1300°C, необходимой для получения стеклообразного продукта. При этом получается поликристаллический материал в котором имеются пустоты, причем многие кристаллы часто срастаются вследствие процесса диффузии. Для изменения физических свойств материала (уменьшения диэлектрической проницаемости или понижения температурного перехода) или по техническим причинам (например в качестве флюсов для изменения скорости роста кристаллов) может оказаться необходимыми добавки. Твердость керамических материалов позволяет изготовлять из них изделия практически любых форм и размеров — бруски, диски, полые цилиндры и т.д. 

2.2 Основные свойства

Общие свойства

Многие свойства сегнетоэлектриков отличаются от свойств которых следовало бы ожидать для однородных материалов. Это обусловлено наличием доменов точно также, как в ферромагнетиках. Так, например, характер тока переключения тесно связан с поведением доменов. Домены имеются как в монокристалле, так и в кристаллах керамического образца. Сегнетоэлектрический домен представляет собой макроскопическую область, в которой направление спонтанной поляризации одинаково и отличается от направления спонтанной поляризации в соседних доменах.

Разделяющие доменные стенки могут перемещаться внутри монокристалла; при этом одни домены увеличиваются, а другие уменьшаются. Теоретически было рассчитано Ландауэром и другими, что в титанате бария необходимое для переполяризации монокристалла поле должно составлять около 200 кВ/см, однако практически переполяризация легко осуществляется в поле порядка 1 кВ/см, очевидно, благодаря тому, что в кристалле всегда присутствуют небольшие домены с обратным направлением поляризации. При переполяризации эти домены растут либо за счет перемещения доменных стенок, либо за счет некоторого сходного процесса.

В монокристалле относительная ориентация электрических моментов доменов определяется симметрией кристаллической решетки. Например, в тетрагональной модификации титаната бария (BaTiO3) возможны шесть направлений спонтанной поляризованности: антипараллельных или перпендикулярных друг другу. Соответственно для этого случая различают 180-градусные и 90-градусные доменные границы.

 

 

 

 

 

Энергетически наиболее выгодной является такая структура, при которой обеспечивается электрическая нейтральность доменных границ, т. е. проекция вектора поляризации на границу со стороны одного домена должна быть равна по длине и противоположна по направлению проекции вектора поляризации со стороны соседнего домена. По этой причине электрические моменты доменов ориентируются по принципу «голова» к «хвосту». Установлено, что линейные размеры доменов составляют от 10-4 до 10-1 см.

В поликристаллическом сегнетоэлектрике в каждом кристалле могут существовать несколько доменов. Различным направлениям поляризации соответствуют не только слегка отличающиеся положения некоторых ионов в элементарной ячейке, но часто также и различные изменения формы самой ячейки.

Внешнее электрическое поле изменяет направления электрических моментов доменов, что создает эффект очень сильной поляризации. Этим объясняются свойственные сегнетоэлектрикам сверхвысокие значения диэлектрической проницаемости (до сотен тысяч). Доменная поляризация связана с процессами зарождения и роста новых доменов за счет смещения доменных границ, которые в итоге вызывают переориентацию вектора спонтанной поляризованности в направлении внешнего электрического поля.

Следствием доменного строения сегнетоэлектриков  является нелинейная зависимость их электрической индукции от напряженности электрического поля, показанная на рис. 1. При воздействии слабого электрического поля связь между D и Е носит приблизительно линейный характер (участок ОА). На этом участке преобладают процессы обратимого смещения (флуктуации) доменных границ. В области более сильных полей (область АВ) смещение доменных границ носит необратимый характер. При этом разрастаются домены с преимущественной ориентацией, у которых вектор спонтанной поляризации образует наименьший угол с направлением поля. При некоторой напряженности поля, соответствующей точке В, все домены оказываются ориентированными по полю. Наступает состояние технического насыщения. В монокристаллах состояние технического насыщения соответствует однодоменному состоянию. Некоторое возрастание индукции в сегнетоэлектрике на участке технического насыщения обусловлено процессами индуцированной (т. е. электронной и ионной) поляризации. Ее роль усиливается с повышением температуры. Кривую ОАВ называют основной кривой поляризации сегнетоэлектрика (кривая заряда сегнетоэлектрического конденсатора).

Если в поляризованном до насыщения образце уменьшить напряженность поля до нуля, то индукция в ноль не обратится, а примет некоторое остаточное значение Dr. При воздействии полем противоположной полярности индукция быстро уменьшается и при некоторой напряженности поля изменяет свое направление. Дальнейшее увеличение напряженности поля вновь переводит образец в состояние технического насыщения (точка С). Отсюда следует, что переполяризация сегнетоэлектрика в переменных полях сопровождается диэлектрическим гистерезисом. Напряженность поля Ер, при которой индукция проходит через ноль, называется коэрцитивной силой.

Диэлектрический гистерезис обусловлен необратимым смещением доменных границ под действием поля и свидетельствует о дополнительном механизме диэлектрических потерь, связанных с затратами энергии на ориентацию доменов. Площадь гистерезисной петли пропорциональна энергии, рассеиваемой в диэлектрике за один период. Вследствие потерь на гистерезис сегнетоэлектрики характеризуются весьма большим тангенсом угла диэлектрических потерь, который в типичных случаях принимает значение порядка 0,1.

Совокупность вершин гистерезисных петель, полученных при различных значениях амплитуды переменного поля, образует основную кривую поляризации сегнетоэлектрика (см. рис. 1).

Для большинства сегнетоэлектриков диэлектрическая проницаемость велика даже при температурах, не слишком близких к TK. Диэлектрическую проницаемость e можно измерить, нанеся на кристалл пару электродов и определив тем или иным путем его емкость в переменном электрическом поле.

Выше температуры перехода ТK температурная зависимость диэлектрической проницаемости часто хорошо апроксимируется законом Кюри-Вейса:

e= 4pС / (Т-Тс), 

где С — константа Кюри. Ниже температуры перехода e быстро уменьшается. Для веществ с переходом второго рода значения Тс и ТK обычно совпадают. Для других веществ Тс на несколько градусов ниже ТK.

Нелинейность e(Е) является важной характеристикой сегнетоэлектриков. Если создаваемая приложенным полем Е поляризация не остается пропорциональной при возрастании поля, то измерения в переменном поле будут давать различные значения проницаемости при различных амплитудах поля. Нелинейность eпроявляется также при измерениях в достаточно малом поле при наличии дополнительного смещающего напряжения.

Нелинейность поляризации по отношению к полю и наличие гистерезиса обусловливают зависимость диэлектрической проницаемости и емкости сегнетоэлектрического конденсатора от режима работы. Для характеристики свойств материала в различных условиях работы нелинейного элемента используют понятия статической, реверсивной, эффективной и других диэлектрических проницаемостей.

Статическая диэлектрическая проницаемость eст определяется по основной кривой поляризации сегнетоэлектрика:

eст = D/(e0Е) = 1 + Р/(e0Е) » Р/(e0Е).

Реверсивная диэлектрическая проницаемость eр характеризует изменение поляризации сегнетоэлектрика в переменном электрическом поле при одновременном воздействии постоянного поля.

Эффективную диэлектрическую проницаемость eэф, как и эффективную емкость конденсатора, определяют по действующему значению тока I (не синусоидального), проходящего в цепи с нелинейным элементом при заданном действующем напряжении U с угловой частотой w:

eэф ~ Сэф = I/(wU)

Диэлектрическую проницаемость, измеряемую в очень слабых электрических полях, называют начальной.

Специфические свойства сегнетоэлектриков проявляются лишь в определенном диапазоне температур. В процессе нагревания выше некоторой температуры происходит распад доменной структуры и электрик переходит в параэлектрическое состояние. Температура Тк такого фазового перехода получила название сегнетоэлектрической точки Кюри. В точке Кюри спонтанная поляризованность исчезает, а диэлектрическая проницаемость достигает своего максимального значения.

Зависимость e титаната бария от температуры. Видно, что при температуре порядка 120°С имеется выраженная точка Кюри, ниже которой материал обладает сегнетоэлектрическими свойствами, хотя в нем и наблюдаются дополнительные структурные изменения (вторичные максимумы на кривых).

Переход сегнетоэлектрика в параэлектрическое состояние сопровождается резким уменьшением tgd, поскольку исчезают потери на гистерезис.

Информация о работе Нелинейные диэлектрики и их свойства