Автор работы: Пользователь скрыл имя, 09 Июня 2015 в 20:36, реферат
Сегнетоэлектриками называют вещества, обладающие спонтанной (самопроизвольной) поляризацией, направление которой может быть изменено с помощью внешнего электрического поля.
Характерные особенности таких материалов при t < θ относятся:
Наличие доменной структуры;
Диэлектрический гистерезис и остаточная поляризованность после снятия поля;
Некоторые свойства керамики отличаются от свойств соответствующих монокристаллов. Это связано с хаотической ориентацией кристаллитов, пористостью материала, а также тем, что многие кристаллиты находятся в механически напряженном состоянии даже тогда, когда к материалу не приложено никакого внешнего напряжения. Изменения свойств, вызванного наличием пор, обычно учитывается просто плотностью материала. Например, если плотность кристалла титаната бария 6,0 г/см3, то плотность его керамики обычно составляет около 5,7 г/см3. Керамики обычно имеют такие же, как и у монокристаллов температуру перехода, теплоемкость и константу Кюри (с учетом поправки на пористость).
В керамике титаната бария каждый кристаллит имеет по отношению к своим кристаллографическим осям шесть эквивалентных возможных направлений возможных направлений спонтанной поляризации; ориентация же самих кристаллитов хаотическая. В общем случае действительно реализующиеся направления спонтанной поляризации в керамике статистически равномерно распределены по шести указанным направлениям. Но это не всегда имеет место, так как специальной обработкой можно создать можно создать преимущественное направление поляризации, например приложив к изделию на подходящей стадии его приготовления (или даже к охлажденному изделию ) постоянное электрическое поле. Такой процесс называют поляризацией керамики.
При этом в каждом кристаллите становится предпочтительным то из направлений спонтанной поляризации, которое ближе остальных к направлению поля. Однако этот процесс не может привести к столь же большой поляризации образца, как в случае монокристалла. Можно показать, что максимальная возможная поляризация керамического образца составляет 84% поляризации монокристалла титаната бария.
Это значение практически никогда не достигается вследствие внутренних механических напряжений и пористости керамики; обычно поляризация составляет около 55% когда поле приложено, и меньше это значения, когда поляризующее поле снято.
Значения пьезоэлектрических коэффициентов для керамики также ниже, чем для монокристалла, составляя после соответствующей поляризации около 25% значений для монокристалла.
Легко видеть, что специфические условия, существующие в керамике сильно влияют на одни свойства кристалла и не влияют на другие. Например, полная поляризация PS является средней величиной по различным кристаллитам; если кристаллиты ориентированы хаотически, то эта средняя величина обращается в ноль. Аналогичный пьезоэффект будет мал, так как поле удлиняет одни кристаллы и укорачивает другие. Но диэлектрическая проницаемость может сильно и не изменяться, так как измерительное переменное поле в течение каждого полупериода будет увеличивать поляризацию в одних кристаллах и уменьшать в других.
Свойствами керамики в определенной степени можно управлять. Желательные изменения параметров можно получать, изменяя внутренние механические напряжения посредством изменения качества помола (размеров кристаллов) или с помощью различных процессов отжига. Для керамики титаната бария диэлектрическая проницаемость увеличивается с уменьшением размера кристаллов. Добавки также могут изменять внутренние напряжения.
Для понимания причин и природы спонтанной поляризации необходимо знание атомной структуры и ее изменений при фазовых переходах. Рассмотрим в качестве примера возникновение спонтанной поляризации в титанате бария (ВаТiO3), который по своей научной значимости и техническому применению занимает ведущее место среди сегнетоэлектриков. Именно изучение нелинейных свойств титаната бария, начатое в СССР Б. М. Вулом еще в 1944 г., послужило мощным импульсом к развитию теоретических, экспериментальных и поисковых работ в области сегнетоэлектричества.
При температуре выше 120°С (точка Кюри), титанат бария обладает кристаллической структурой типа перовскит. В состав элементарной ячейки, имеющей форму куба, входит одна формульная единица типа АВО3. Основу структуры составляют кислородные октаэдры, в центре которых расположены ионы титана. В свою очередь ионы кислорода центрируют грани кубов, составленных из ионов бария.
Размеры элементарной ячейки больше удвоенной суммы ионных радиусов титана и кислорода. Поэтому ион титана имеет некоторую свободу перемещения в пределах кислородного октаэдра.
При высокой температуре вследствие интенсивного теплового движения ион титана непрерывно перебрасывается от одного кислородного иона к другому, так что усредненное во времени его положение совпадает с центром элементарной ячейки. Благодаря центральной симметрии такая ячейка не обладает электрическим моментом.
При температуре ниже ТК = 120°С, как показывает опыт, энергия теплового движения недостаточна для переброса иона титана из одною равновесного положения в другое, и он локализуется вблизи одного из окружающих его кислородных ионов. В результате нарушается кубическая симметрия в расположении заряженных частиц, и элементарная ячейка приобретает электрический момент. Одновременно с этим искажается форма ячейки — она вытягивается по направлению оси, проходящей через центры ионов кислорода и титана, сблизившихся между собой, принимая тетрагональную симметрию.
Взаимодействие между заряженными частицами соседних ячеек приводит к тому, что смещение ионов титана происходит в них согласованно, в одном направлении, а это, в свою очередь, приводит к образованию доменов.
Рассмотренная схема образования спонтанной поляризации ВаТiO3 носит качественный характер. Тщательные исследования, выполненные с помощью дифракции нейтронов, показывают, что в действительности фазовый переход в сегнетоэлектрическую фазу обусловлен смещением из симметричных положений не только ионов титана существенный вклад в электрический момент каждой ячейки вносит и смещение кислородных ионов.
При зарождении новой (сегнетоэлектрической) фазы смещение ионов может происходить в направлении любого из ребер кубической элементарной ячейки. Поэтому в тетрагональной модификации BaTiO3 возможны шесть направлений спонтанной поляризованности.
Подобного рода фазовые переходы, наблюдаемые в ионных сегнетоэлектриках, получили название переходов типа смешения. Однако появление спонтанной поляризации может происходить не только при смещении ионов, но и за счет упорядочения в расположении дипольных групп, занимающих в симметричной (параэлектрической) фазе с равной вероятностью несколько различных положений равновесия. Такой механизм образования сегнетоэлектрического состояния более характерен для дипольных кристаллов. В качестве типичных примеров можно указать кристаллы сегнетовой соли, нитрита натрия, триглицинсульфата дигидрофосфата калия и др. Фазовые переходы, связанные со спонтанным упорядочением дипольных моментов, называют переходами типа «порядок-беспорядок».
В некоторых кристаллах электрические моменты соседних элементарных ячеек за счет соответствующего смещения ионов или упорядочения дипольных моментов оказываются ориентированными во взаимно противоположных направлениях. Такие вещества с антипараллельными электрическими моментами называют антисегнетоэлектриками. Они также имеют доменное строение, однако спонтанная поляризованность каждого домена равна нулю. В параэлектрической фазе (т. е. выше температуры Кюри) антисегнетоэлектрики могут обладать высокой диэлектрической проницаемостью. Примерами антисегнетоэлектриков являются цирконат свинца (PbZrO3), ниобат натрия (NaNbO3) дигидрофосфат аммония (NH4H2P04) и др.
В техническом применении сегнетоэлектриков наметилось несколько направлений, важнейшими из которых следует считать:
1) изготовление малогабаритных
низкочастотных конденсаторов
2) использование материалов с
большой нелинейностью
3) использование
4) использование кристаллов
5) изготовление
Конденсаторная сегнетокерамика, как и любой диэлектрик, для производства обычных конденсаторов, должна иметь наибольшую величину диэлектрической проницаемости с малой зависимостью от температуры, незначительные потери, наименьшую зависимость e и tgd от напряженности электрического поля (малую нелинейность), высокие значения удельного объемного и поверхностного сопротивлений и электрической прочности.
Одним из важнейших методов получения оптимальных свойств в заданном температурном интервале является использование твердых растворов. Изменением концентрации компонентов в твердом растворе можно регулировать значения диэлектрической проницаемости, смещать температуру Кюри, изменять нелинейность поляризации и т. д. В твердых растворах, по сравнению с простыми веществами, можно получить более сглаженные температурные зависимости e, что имеет важное значение для производства конденсаторов. Однако в большинстве случаев использование однофазных материалов, даже являющихся твердыми растворами, не может обеспечить достаточно слабую температурную зависимость e. Для ослабления температурных зависимостей параметров конденсаторов в состав сегнетокерамики вводят различные добавки, которые «размывают» сегнетоэлектрический фазовый переход. В большинстве случаев конденсаторные сегнетокерамические материалы содержат несколько кристаллических фаз. При «размытом» фазовом переходе сравнительно слабо выражены и нелинейные свойства диэлектриков. В промышленности используют несколько сегнетокерамических материалов, каждый из которых применяют для определенных типов конденсаторов, так как ни один материал не отвечает совокупности всех перечисленных требований.
Среди существующей конденсаторной сегнетокерамики можно выделить:
1) материалы со слабо выраженной
температурной зависимостью
2) материалы со сглаженной
3) материалы с максимальным
В материале Т-900 кристаллическая фаза представляет собой твердый раствор титанатов стронция (SrTiO3) и висмута (Bi4Ti3O12). Максимум e соответствует точке Кюри ТК = -140°С. Рабочий диапазон температур расположен значительно правее ТК, поэтому температурная зависимость e слегка падающая.
Материал СМ-1 изготавливают на основе титаната бария с добавкой окислов циркония и висмута. Его применяют для производства малогабаритных конденсаторов на низкие напряжения.
Материал Т-8000 имеет кристаллическую фазу, представляющую собой твердый раствор ВаТiOз — ВаZr0з. Точка Кюри этого материала находится в области комнатной температуры, поэтому вблизи нее диэлектрическая проницаемость имеет максимальное значение. Данный материал используют для изготовления конденсаторов, работающих при комнатной температуре (в нешироком интервале температур), в том числе и высоковольтных.
Распространены и другие сегнетокерамические материалы для конденсаторов, отличающиеся большей диэлектрической проницаемостью и более сглаженной зависимостью ее от температуры.
Материалы для варикондов имеют резко выраженные нелинейные свойства; применяются для изготовления нелинейных конденсаторов — варикондов.
Одна из основных характеристик варикондов — коэффициент нелинейности К, определяемый как отношение максимального значения диэлектрической проницаемости при некоторой, максимальной для данного материала, напряженности электрического поля к начальному значению диэлектрической проницаемости. Численное значение коэффициента нелинейности для различных марок варикондов может изменяться от 4 до 50 (в переменном поле). Основной кристаллической фазой в таких материалах являются твердые растворы системы Ba(Ti,Sn)03 или Pb(Ti, Zr, Sn)03.
Вариконды предназначены для управления параметрами электрических цепей за счет изменения их емкости при воздействии как постоянного или переменного напряжения, так и нескольких напряжений, приложенных одновременно и различающихся по значению и частоте. В простейшем случае им приходится работать при одновременном воздействии переменного (синусоидального) и постоянного электрических полей, причем Е_ >> E~. Как отмечалось, изменение поляризации сегнетоэлектрика в этих условиях определяется реверсивной диэлектрической проницаемостью eР. Она характеризует степень ориентируемости электрических моментов доменов переменным полем при наличии преимущественной направленности их действием постоянного поля. Чем сильнее приложенное к сегнетоэлектрику постоянное поле, т. е. чем больше направленность электрических моментов доменов, тем меньше влияние на суммарную электрическую индукцию в сегнетоэлектрике оказывает переменное поле. Следовательно, при заданной амплитуде переменного поля ЕM реверсивная диэлектрическая проницаемость eР с ростом Е_ уменьшается.
Нелинейные диэлектрические элементы, обычно в тонкопленочном исполнении, являются основой разнообразных радиотехнических устройств — параметрических усилителей, низкочастотных усилителей мощности, фазовращателей, умножителей частоты, модуляторов, стабилизаторов напряжения, управляемых фильтров и др.