Автор работы: Пользователь скрыл имя, 11 Декабря 2010 в 10:16, курсовая работа
Работа о звуковых картах для создания сайта
Звуковые платы: основные понятия и термины
Основные производители звуковых микросхем
Обработка трехмерного звука
Вывод
Список используемой литературы
Звуковые платы, созданные в течение последних лет, достаточно успешно справляются с требованиями современных компьютерных игр, что происходит, большей частью, благодаря уровню эмуляции аппаратных средств (Hardware Emulation Layer — HEL), встроенному в DirectX. HEL предоставляет звуковым платам более ранних версий программную реализацию отсутствующих аппаратных возможностей, например трехмерного звука. Следует заметить, что выполнение эмуляции не обеспечивает должного качества звука и может ощутимо сказаться на скорости компьютерных игр.
Минимальные требования, предъявляемые к звуковым платам
Для полноценного участия в компьютерных баталиях следует обратить внимание на описанные ниже возможности звуковых плат.
Звуковые платы: основные понятия и термины
Чтобы понять, что такое звуковые платы, сначала необходимо разобраться в некоторых терминах, например 16-разрядный, качество компакт-диска, порт MIDI и др. В описаниях новых технологий звукозаписи постоянно встречаются такие туманные понятия, как дискретизация и цифроаналоговый преобразователь — ЦАП (Digital-to-Analog Conversion — DAC). Эти понятия раскрываются ниже.
Природа звука
Для начала выясним, что такое звук. Звук — это колебания (волны), распространяющиеся в воздухе или другой среде от источника колебаний во всех направлениях. Когда волны достигают вашего уха, расположенные в нем чувствительные элементы воспринимают эту вибрацию и вы слышите звук.Каждый звук характеризуется частотой и интенсивностью (громкостью).
Частота — это количество звуковых колебаний в секунду; она измеряется в герцах (Гц). Один цикл (период) — это одно движение источника колебания (туда и обратно). Чем выше частота, тем выше тон.
Человеческое ухо воспринимает лишь небольшой диапазон частот. Очень немногие слышат звуки ниже 16 Гц и выше 20 кГц (1 кГц = 1 000 Гц). Частота звука самой низкой ноты на рояле равна 27 Гц, а самой высокой — чуть больше 4 кГц. Наивысшая звуковая частота, которую могут передать радиовещательные FM-станции, — 15 кГц.
Громкость звука определяется амплитудой колебаний. Амплитуда звуковых колебаний зависит в первую очередь от мощности источника звука. Например, струна пианино при слабом ударе по клавише звучит тихо, поскольку диапазон ее колебаний невелик. Если же ударить по клавише посильнее, то амплитуда колебаний струны увеличится. Громкость звука измеряется в децибелах (дБ). Шорох листьев, например, имеет громкость около 20 дБ, обычный уличный шум — около 70 дБ, а близкий удар грома — 120 дБ.
Оценка качества звукового адаптера
Для оценки качества звукового адаптера используется три параметра:
Частотная характеристика определяет тот диапазон частот, в котором уровень записываемых и воспроизводимых амплитуд остается постоянным. Для большинства звуковых плат этот диапазон составляет от 30 Гц до 20 кГц.
Коэффициент нелинейных искажений характеризует нелинейность звуковой платы, т. е. отличие реальной кривой частотной характеристики от идеальной прямой, или, проще говоря, коэффициент характеризует чистоту воспроизведения звука. Каждый нелинейный элемент является причиной искажения. Чем меньше этот коэффициент, тем выше качество звука. Этот коэффициент может различаться для аудиоадаптеров с одинаковым набором микросхем. Модели с дешевыми компонентами зачастую имеют значительные искажения, что ухудшает качество звука.
Отношение сигнал/шум характеризует силу звукового сигнала по отношению к фоновому шуму (шипению). Чем больше показатель (в децибелах), тем лучше качество воспроизведения звука. Например, аудиоадаптер Sound Blaster Audigy имеет отношение 100 дБ, в то время как более старая звуковая плата характеризуется отношением 90 дБ.
Перечисленные факторы имеют важное значение для всех сфер применения аудиоадаптеров — от воспроизведения файла WAV до распознавания речи. Не забывайте о том, что дешевые микрофон и акустическая система могут свести на нет все преимущества дорогого аудиоадаптера.
Дискретизация
Если в компьютере установлена звуковая плата, то он может записывать звук в цифровой (называемой также дискретной) форме, в этом случае компьютер используется в качестве записывающего устройства. В состав звуковой платы входит небольшая микросхема — аналого-цифровой преобразователь, или АЦП (Analog-to-Digital Converter — ADC), который при записи преобразует аналоговый сигнал в цифровую форму, понятную компьютеру. Аналогично при воспроизведении цифроаналоговый преобразователь (Digital-to-Analog Converter — DAC) преобразует аудиозапись в звук, который способны воспринимать наши уши.
Дискретизацией называется процесс превращения исходного звукового сигнала в цифровую форму (рис.), в которой он и хранится для последующего воспроизведения. (Процесс преобразования в цифровую форму называется также оцифровыванием.) При этом сохраняются мгновенные значения звукового сигнала в определенные моменты времени, называемые выборками. Чем чаще берутся выборки, тем точнее цифровая копия звука соответствует оригиналу.
.
Первым стандартом MPC предусматривался "8-разрядный" звук. Это не означает, что звуковые платы должны были вставляться в 8-разрядный разъем расширения. Разрядность звука характеризует количество бит, используемых для цифрового представления каждой выборки. При восьми разрядах количество дискретных уровней звукового сигнала составляет 256, а если использовать 16 бит, то их количество достигает 65 536. Современные высококачественные аудиоадаптеры поддерживают 24-битовую дискретизацию, причем количество дискретных уровней звукового сигнала составляет более чем 16,8 млн.
Основные производители звуковых микросхем
Большинство компаний, занимающихся изготовлением звуковых устройств (кроме Creative Labs и Philips), зависят от сторонних производителей звуковых микросхем.
Трехмерный звук
Одним из наиболее сложных испытаний для звуковых плат, входящих в состав игровых систем, является выполнение задач, связанных с обработкой трехмерного звука. Существует несколько факторов, усложняющих решение задач подобного рода:
Позиционный звук
Позиционирование звука является общей технологией для всех 3D-звуковых плат и включает в себя настройку определенных параметров, таких, как реверберация или отражение звука, выравнивание (баланс) и указание на "расположение" источника звука. Все эти компоненты создают иллюзию звуков, раздающихся впереди, справа, слева от пользователя или даже за его спиной.
Наиболее важным элементом позиционного звука является функция преобразования HRTF (Head Related Transfer Function), определяющая изменение восприятия звука в зависимости от формы уха и угла поворота головы слушателя. Параметры этой функции определяют условия, при которых "реалистичный" звук может восприниматься совершенно иначе при повороте головы слушателя в ту или другую сторону.
Использование акустических систем с несколькими колонками, "окружающими" пользователя со всех сторон, а также сложные звуковые алгоритмы, дополняющие воспроизводимый звук управляемой реверберацией, позволяют сделать синтезированный компьютером звук еще более реалистичным.
Одной из наиболее существенных проблем, стоящих перед любителями компьютерных игр, является непрекращающаяся конкуренция между различными API, предназначенными для выполнения практически одних и тех же задач. Разработчикам компьютерных игр когда-то приходилось постоянно выбирать, поддерживать им графическую систему Glide или OpenGL, а также какому из стандартов трехмерного звука следует отдать предпочтение.
Недавние и текущие версии библиотеки Direct3D, входящей в Microsoft DirectX, поддерживают, в отличие от ее оригинальной версии, программное обеспечение сторонних производителей, что позволяет 3D-звуковым платам полноценно использовать технологии позиционирования звука.
В течение 1999 и первой половины 2000 года основными конкурентами в области 3D-игровых стандартов были технологии A3D компании Aureal и EAX (Environmental Audio Extensions) компании Creative Labs. Стандарт A3D, особенно версии 2.0, считался более прогрессивным, чем его соперник из компании Creative Labs. Несмотря на это, большинство разработчиков поддерживали технологию EAX. В середине 2000 года компания Aureal была закрыта, а затем поглощена Creative Labs. Эти события ознаменовали конец стандарта A3D как жизнеспособного игрового API.
Практически все новые звуковые платы, существующие на сегодняшнем рынке, поддерживают технологию EAX компании Creative Labs. Несмотря на это, многие производители аудиоадаптеров стараются расширить эффекты EAX с помощью звукового ядра Virtual Ear от компании Sensaura, которое позволяет пользователю изменять "местоположение" источника воспроизводимого звука, регулируя размер и форму используемого "уха". В настоящее время технология Virtual Ear используется в звуковых платах, поставляемых компаниями Aopen, Labway, Yamaha, Voyetra Turtle Beach, Guillemot и др.
Обработка трехмерного звука
Вторым по важности фактором качественного звучания являются различные способы реализации обработки трехмерного звука в звуковых платах. Существуют следующие основные методы обработки звука:
Обработка
трехмерного звука в
В звуковых платах со встроенным аудиопроцессором частота смены кадров при включении или отключении трехмерного звука почти не изменяется. 3D-ускорение поддерживается многими современными микросхемами, которые поставляются основными производителями звуковых плат и наборов микросхем, но количество поддерживаемых трехмерных звуковых потоков варьируется в зависимости от используемой микросхемы и может иногда ограничиваться из-за проблем с программными драйверами.
Информация о работе Создание информационно-справочной службы на тему: «Звуковые карты»