Архитектура видеоадаптеров

Автор работы: Пользователь скрыл имя, 08 Апреля 2011 в 06:15, реферат

Описание работы

принципы работы, основные технологии

Содержание работы

Введение……………………………………………………………………………………….3
Основные характеристики видеокарт……………………………………………….………5
Основные компоненты видеокарты………………………………………………………....6
Технологии…………………………………………………………………………………....6
Технологии NVIDIA………………………………………………………………………….7
Технологии AMD………………………………………………………………………….…8
Интерфейсы видеокарт……………………………………………………………………....9
Функциональные блоки видеокарт…………………………………………………………12
Решения на нескольких видеокартах……………………………………………………….13
Устройство видеоускорителя………………………………………………………………..15
Классический пример конвейера……………………………………………………………20
Унифицированная архитектура……………………………………………………………...21
Ядро и память.Разгон.………………………...…………………………………..…………..22
Заключение………………………………………………….…………………………….…...22
Источники……………………………………………………………………………………...23

Файлы: 1 файл

Видеокарты.docx

— 71.67 Кб (Скачать файл)
 

Решения на нескольких видеокартах.

Использовать несколько видеокарт для увеличения графической производительности - идея не новая. В ранние дни 3D-графики копания 3dfx вышла на рынок с двумя видеокартами, работающими параллельно. Но с исчезновением 3dfx технология совместной работы нескольких потребительских видеокарт была предана забвению, хотя ATi выпускала подобные системы для профессиональных симуляторов ещё с выхода Radeon 9700. Пару лет назад технология вернулась на рынок: с появлением решений nVidia SLI и, чуть позднее, ATi Crossfire.

Совместное использование  нескольких видеокарт даёт достаточную  производительность, чтобы вывести  игру с высокими настройками качества в высоком разрешении. Но выбирать то или иное решение не так просто.

Начнём с того, что решения на основе нескольких видеокарт требуют большое количество энергии, поэтому блок питания должен быть достаточно мощным. Всё это  тепло придётся отводить от видеокарты, поэтому нужно обратить внимание на корпус ПК и охлаждение, чтобы  система не перегрелась.

Кроме того, помните, что SLI/CrossFire требует соответствующей материнской платы (либо под одну технологию, либо под другую), которая обычно стоит дороже по сравнению со стандартными моделями. Конфигурация nVidia SLI будет работать только на определённых платах nForce, а карты ATi CrossFire - только на материнских платах с чипсетом CrossFire или на некоторых моделях Intel. Ситуацию осложняет и то, что некоторые конфигурации CrossFire требуют, чтобы одна из карт была специальной: CrossFire Edition. После выхода CrossFire для некоторых моделей видеокарт ATi разрешила включать технологию совместной работы по шине PCI Express, причём с выходами новых версий драйверов число возможных комбинаций увеличивается. Но всё же аппаратный CrossFire с соответствующей картой CrossFire Edition даёт более высокую производительность. Но и карты CrossFire Edition стоят дороже обычных моделей.

Следует учитывать  и другие факторы. Хотя две графические  карты, работающие совместно, и дают прирост производительности, ему  далеко до двукратного. Чаще всего прирост производительности составляет 20-60%. А в некоторых случаях из-за дополнительных вычислительных расходов на согласование прироста нет вообще. По этой причине конфигурации на нескольких картах вряд ли оправдывают себя с дешёвыми моделями, поскольку более дорогая видеокарта, как правило, всегда обгоняет пару дешёвых карт. В общем, для большинства потребителей брать решение SLI/CrossFire смысла не имеет. Но если вы хотите включить все опции улучшения качества или играть в экстремальных разрешениях, например, 2560x1600, когда надо просчитывать больше 4 миллионов пикселей на кадр, то без двух или четырёх спаренных видеокарт не обойтись.

 

Устройство  видеоускорителя.

Считается, что  прадедушкой современной видеокарты (также известной как графическая  плата, видеоадаптер, графический адаптер, видеоакселератор) является адаптер MDA (Monochrome Display Adapter), представленный в 1981 году для IBM PC. Видеокарта того времени имела 4Кбайт видеопамяти, работала только с текстовой информацией и с разрешением 720х350 точек (80х25 символов), а цвет букв зависел от типа монитора: белые, изумрудные или янтарные. Дальнейшее развитие MDA было выпущено в 1982 году известной компанией Hercules и называлось Hercules Graphics Controller (HGC), но и эта видеокарта не позволяла работать с графикой. Стоит заметить, что длина карты HGC была более 30 см.

И только с выходом  видеоадаптера CGA (Color Graphics Adapter), который стал основой для последующих стандартов, появилась возможность работать с цветной графической информацией в разрешении 320х200 (16 цветов) и 640х200 (монохромный режим – то есть чёрно-белый), при этом объём памяти видеокарты уже равнялся 16 Кбайт. Следующий стандарт для видеокарт – Enhanced Graphics Adapter (EGA), разработанный в 1984 году, позволял при разрешении 640x350 работать с 16 цветами из 64-цветной палитры одновременно. Ёмкость видеопамяти составляла всё те же 16 Кбайт, а также была заявлена совместимость с CGA и MDA.

Все описанные  выше видеокарты подключались к монитору через 9-контактный разъём и передавали информацию в цифровом виде. Только с выходом адаптера стандарта MCGA (Multicolor Graphics Adapter – многоцветный графический адаптер) произошёл переход на аналоговый сигнал, так как палитра была увеличена до 262144 цветов (по 64 оттенка на каждый из базовых цветов Red/Green/Blue). Разрешение экрана, выдаваемое MCGA при работе с текстом, было 640х400 с 256 одновременно отображаемыми цветами, для графических приложений – 320х200 точек. Разъём для подключения к монитору приобретает привычный для нас вид – 15-контактный D-Sub. Следующим витком эволюции компьютерной видеоподсистемы является VGA (Video Graphics Array – графический видеомассив), который появился в 1987 году. Адаптеры VGA уже поддерживали разрешение 640х480 и 256 цветов (из палитры в 262144 цвета), объём памяти составлял 256 Кбайт, а соотношение сторон экрана равнялось привычным сейчас 4:3. Именно с этого стандарта пошло множество знакомых сейчас простонародных названий: VGA'шный монитор, VGA'шный разъём и так далее. Более того, именно из этой аббревиатуры развились сокращённые названия разрешений (например, теперь считается, что VGA – это 640х480 точек, SVGA – 800х600, XGA – 1024х768 и так далее).

И наконец, в 1991 году появляются первые адаптеры SVGA (Super VGA), позволяющие работать при разрешении 800х600 и 1024х768 точек, количество отображаемых цветов увеличилось до 65536 (High Color) и 16,7 млн (True Color). Также появляется возможность пользователю задать частоту обновления экрана монитора – до этого момента она была жёстко привязана к определённому значению. Память видеоадаптеров SVGA была уже более 1 Мбайт.

Для связи с  видеокартой и передачи необходимых  данных в самом начале эры IBM PC использовался  интерфейс XT-Bus, потом на смену ему пришла шина ISA (Industry Standard Architecture – архитектура промышленного стандарта). Но и ISA уже не хватало для относительно большого потока данных. Тогда она была дополнена интерфейсом VLB (или VESA), который в итоге был заменён шиной PCI (Periferal Component Interconnect – объединение внешних компонентов). PCI является более универсальной шиной, через которую можно было подключать множество других контроллеров, не только видеоадаптеры, к тому же она способна работать и на других платформах.

С развитием  графических оболочек операционных систем (например, Windows) видеокарты взяли на себя часть вычислений по окончательному выводу изображения на экран, которые обычно производил центральный процессор: перемещение окон, рисование линий, шрифтов и другие. С появлением трёхмерных игр видеокарты обзавелись 3D-акселератором, который сперва имел вид отдельной платы, вставляемой в свободный разъём на материнской плате, а позже уже был интегрирован дополнительным чипом на видеокарту – до этого момента видеоадаптер позволял работать только с двухмерной графикой (2D). Далее, с развитием технологий производства полупроводников, графический чип стал содержать в себе все необходимые блоки, отвечающие как за 2D-, так и 3D-графику. Для максимальной универсальности и совместимости видеокарт с программным обеспечением компания Microsoft создаёт API DirectX (API – интерфейс программирования приложений), работающий в среде Windows. Так как мир не однополярный и кроме Windows существуют и другие операционные системы, был разработан альтернативный API – мультиплатформенный OpenGL, а также его дополнение для звука – OpenAL.

Именно в те времена доминирующая на тот момент компания 3dfx (все активы 3dfx после  банкротства перешли к NVIDIA) представляет технологию SLI (Scan Line Interleave – чередование строчек), благодаря которой появилась возможность объединить две подобные видеокарты с шиной PCI для формирования изображения методом чередования строк, что увеличивало быстродействие графической подсистемы и разрешение экрана. Действительно, всё новое – это хорошо (в данном случае – очень хорошо) забытое старое: спустя почти 15 лет NVIDIA возродила SLI.

Ближе к концу 90-х прошлого века видеоадаптеры  получают собственную шину – AGP (Accelerated Graphics Port – ускоренный графический порт) и приобретают черты современных видеокарт: объём локальной видеопамяти достиг десятков мегабайт, появилась возможность выводить видеоизображение на ещё один приёмник, например, телевизор. Из-за ограничений шины PCI, а именно её разновидностью является AGP, производителям графических процессоров пришлось в итоге отказаться от технологий, подобных SLI (о современных компьютерных шинах вы можете узнать в этом материале).

И только в начале 2000 годов происходит революционный  скачок, благодаря которому мы теперь можем наслаждаться реалистичной графикой в играх последних лет. Появился более скоростной интерфейс – PCI Express (PCI-E), появилась возможность подключать два монитора, причём информация опять выводится в цифровом виде (в более расширенном виде, чем в первых поколениях видеокарт), объём памяти в некоторых случаях достигает 1 Гбайт (1024 Мбайт). Рассказывать об эволюции видеокарт, экзотических решениях и «выдумках» инженеров можно бесконечно. Однако, учитывая темпы развития IT-индустрии и бесперспективность графических технологий и архитектур прошлого поколения, мы не станем подробно останавливаться на «старых» видеокартах, а рассмотрим современные, поддерживающие интерфейс PCI Express.

Видеокарта, как  и любой другой продукт, рассчитанный на розничный рынок, поставляется в  коробке (Retail-версия) как обычной, так и оригинальной формы. Изредка, в последнее время всё реже, покупателю предлагают приобрести продукт в OEM- или так называемой bulk-комплектации, то есть без коробки: антистатический пакет с видеокартой, необходимые кабели и переходники, диск с драйвером. Такая комплектация предназначена для продажи только компаниям – сборщикам компьютеров и не должна попадать в розничную продажу. Естественно, никакой разницы в видеокартах нет, не хватает лишь красивой коробки, которая обеспечивает заметную долю удовольствия от приобретения.

В комплект поставки современного видеоадаптера обычно входят всевозможные переходники, инструкция, диск с драйверами, иногда и с дополнительным программным обеспечением, а также различные бонусы (но не обязательно): игры, чехлы, джойстики.

В качестве основного  примера мы рассмотрим видеокарту производства Chaintech, построенную на базе GeForce 7600GT и оснащённую 256 Мбайт видеопамяти.

Видеокарта, как  и материнская плата, представляет собой очень сложное устройство, но меньших размеров и с небольшим  количеством разъёмов. Размеры видеокарт примерно зависят от того класса, к которому они относятся, так как имеют схематические решения различной сложности: карты начального – Low-End – класса имеют длину около 15-18 см, Middle-End – в среднем 20 см, а длина High-End достигает 25-27 см. Конечно, это не регламентированное требование, а результат того обстоятельства, что мощные контроллеры требуют более сложного набора сопутствующих компонентов. Печатная плата видеоадаптера состоит из нескольких слоев, каждый из которых содержит тонкие токопроводящие дорожки, компоненты видеокарты устанавливаются только на верхних слоях: лицевой и обратной. И ни в коем случае нельзя делать дополнительные отверстия на плате – прецеденты были, и не один раз, – видеокарта сразу же выйдет из строя. С каждой стороны плата покрыта диэлектрическим лаком и усеяна множеством мелких элементов (резисторы, конденсаторы), так что обращаться с видеоадаптером необходимо аккуратно, чтобы не повредить эти элементы. 

Все дорожки  на плате объединяют между собой  графическое ядро (GPU – графический  процессор, видеоядро), видеопамять, раздельные подсистемы питания ядра и памяти (иногда и разъём для дополнительного питания – в случае мощной видеокарты), интерфейсный разъём для подключения к материнской плате, а также разъёмы для подключения мониторов и телевизора.

Ключевым компонентом  любой современной видеокарты является графический процессор, который  занимается расчётами выводимой  на экран информации и трёхмерных сцен. На данный момент разработкой графических процессоров занимаются в основном компании NVIDIA, продвигающая серию GeForce, и AMD, купившая канадскую компанию ATI с её линейкой Radeon. Остальные игроки графического рынка, увы, не выдержали конкуренции и той скорости, с которой разрабатываются очередные поколения видеокарт, и если и выпускают свою продукцию, то отличной производительностью и массовостью похвастаться не могут. В зависимости от того, какой GPU положен в основу видеокарты, определяются её характеристики: поддержка тех или иных технологий визуализации и рендеринга, тип памяти и ширина её шины.

Графическое ядро представляет собой припаянный к  плате чип, в большинстве случаев  без защитной крышки, кристалл которого содержит сотни миллионов транзисторов (даже в несколько раз больше, чем у центральных процессоров). Каждый такой чип состоит из вычислительных блоков, контроллеров шины и памяти, блоков для вывода видеоинформации (RAMDAC). Вся эта структура определяется архитектурой ядра, которая сперва разрабатывается для самого мощного видеоадаптера в семействе-поколении, например: G70, G80 – NVIDIA, R580, R600 – AMD. Затем «топовое» ядро упрощается для менее производительных решений методом исключения определённых блоков. Случаи разработки принципиально новых ядер для среднего и нижнего уровня рынка довольно редки. 

Для того чтобы  удалось разместить всё больше и  больше транзисторов в кристалле  ядра, используются новые, более тонкие техпроцессы, благодаря которым  уменьшаются размеры элементов  и повышается рабочая частота  чипа. На данный момент графические  процессоры производятся по 90, 80 и 65 нм технологическим нормам. В сравнении с концом 90-х годов и началом 2000-х, когда доминировал техпроцесс 250-220 нм, современное производство без каких-либо оговорок можно считать настоящим прорывом, тем более что на носу уже техпроцесс 45 нм. Общее правило «тоньше техпроцесс – выше частота – меньше тепла» объясняется следующим образом: транзистор, мельчайшая единица, из которого состоят все блоки GPU, представляет собой своеобразные ворота для электронов. Стенки и «створка ворот» – затвор транзистора – изготавливаются из диэлектрика, не пропускающего ток, а передаются электроны по стоку. Но так как идеального диэлектрика нет, существуют токи утечки – некоторое количество электронов всё же пробивается через закрытый затвор, вызывая тот самый нагрев. Для того чтобы заставить транзисторы переключаться быстрее (повысить частоту), нужно подать на них больший ток, а это приведёт к большему нагреву. Более мелкие транзисторы, произведённые по более тонкому техпроцессу, требуют для своей работы меньшие токи, а следовательно, и токи утечки у них меньше. Вот потому-то более «тонкие» чипы, как правило, работают на более высокой частоте и греются меньше. Кроме того, производители полупроводников и занимающиеся собственно производством чипов неустанно изыскивают новые способы уменьшить токи утечек: новые диэлектрические сплавы и вещества с низкой проницаемостью. Вот уже мы дожили до того, что, например, ядро G86 (GeForce 8600) при хорошем охлаждении достигает и перешагивает через порог 1 ГГц.

Информация о работе Архитектура видеоадаптеров