Автор работы: Пользователь скрыл имя, 10 Февраля 2011 в 13:20, реферат
Актуальность выбранной темы предопределена широтой сфер ее применения. Теория игр играет центральную роль в теории отраслевой организации, теории контрактов, теории корпоративных финансов и многих других областях. Область применения теории игр включает не только экономические дисциплины, но и биологию, политологию, военное дело и др.
Введение 3
1 Введение в теорию игр 4
1.1 История возникновения 4
1.2 Определение теории игр 4
1.3 Виды конфликтных ситуаций 5
2 Виды игр 6
2.1 Дилемма заключенного 6
2.2 Классификация игр 7
2.3 Типы игр 7
3 Применение теории игр 10
3.1 В военном деле 10
3.2 В управлении 11
3.3 В прочих областях 12
4 Примеры задач 14
4.1 Определения, необходимые для решения задач 14
4.2 Задачи 15
Заключение 17
Список использованной литературы 18
Предположим, что эти двое - рациональные люди, которые хотят минимизировать свои потери. Тогда первый может рассуждать так: если второй меня заложит, то мне лучше тоже его заложить: так мы получим по 2 года, а иначе я получу 10 лет. Но если второй меня не будет закладывать, то мне всё равно лучше его заложить - тогда меня отпустят сразу. Поэтому не зависимо от того, что будет делать другой, мне выгоднее его заложить. Второй также понимает, что в любом случае ему лучше заложить первого. В результате оба из них получают по два года. Хотя если бы они не свидетельствовали друг против друга, то получили бы только по 6 месяцев.
В дилемме заключённого предательство строго доминирует над сотрудничеством, поэтому единственное возможное равновесие — предательство обоих участников. Проще говоря, неважно, что сделает другой игрок, каждый выиграет больше, если предаст. Поскольку в любой ситуации предать выгоднее, чем сотрудничать, все рациональные игроки выберут предательство.
Ведя себя по отдельности рационально, вместе участники приходят к нерациональному решению. В этом и заключается дилемма.
Конфликты,
подобные этой дилемме, часто встречаются
в жизни, например, в экономике (определение
бюджета на рекламу), политике (гонка вооружений),
спорте (использование стероидов). Поэтому
дилемма заключенного и грустное предсказание
теории игр получили широкую известность,
а работа в области теории игр - единственная
возможность для математика получить
Нобелевскую премию.[2]
2.2 Классификация игр
Классификацию различных игр проводят, основываясь на некотором принципе: по числу игроков, по числу стратегий, по свойствам функций выигрыша, по возможности предварительных переговоров и взаимодействия между игроками в ходе игры.
Различают игры с двумя, тремя и более участниками - в зависимости от количества игроков. В принципе возможны также игры с бесконечным числом игроков.
Согласно другому принципу классификации различают игры по количеству стратегий - конечные и бесконечные. В конечных играх участники имеют конечное число возможных стратегий (например, в игре в орлянку игроки имеют по два возможных хода - они могут выбрать "орел" или "решку"). Сами стратегии в конечных играх зачастую называются чистыми стратегиями. Соответственно, в бесконечных играх игроки имеют бесконечное число возможных стратегий - так, в ситуации Продавец-Покупатель каждый из игроков может назвать любую устраивающую его цену и количество продаваемого (покупаемого) товара.
Третьим по счету является способ классификации игр - по свойствам функций выигрыша (платежных функций). Важным случаем в теории игр является ситуация, когда выигрыш одного из игроков равен проигрышу другого, т.е. налицо виден прямой конфликт между игроками. Такие игры называют играми с нулевой суммой, или антагонистическими играми. Игры в орлянку или в очко - типичные примеры антагонистических игр. Прямой противоположностью играм такого типа являются игры с постоянной разностью, а которых игроки и выигрывают, и проигрывают одновременно, так что им выгодно действовать сообща. Между этими крайними случаями имеется множество игр с ненулевой суммой, где имеются и конфликты, и согласованные действия игроков.
В
зависимости от возможности предварительных
переговоров между игроками различают
кооперативные и
2.3 Типы игр
Симметричные и несимметричные
А | Б | |
А | 1, 2 | 0, 0 |
Б | 0, 0 | 1, 2 |
Несимметричная игра |
Игра будет симметричной тогда, когда соответствующие стратегии у игроков будут иметь одинаковые платежи, то есть будут равны. Т.е. если выигрыши за одни и те же ходы не изменятся, при том, что игроки поменяются местами. Многие изучаемые игры для двух игроков — симметричные. В частности, таковыми являются: «Дилемма заключённого», «Охота на оленя», «Ястребы и голуби». В качестве несимметричных игр можно привести «Ультиматум» или «Диктатор».
В примере справа игра, на первый взгляд может показаться симметричной из-за похожих стратегий, но это не так — ведь выигрыш второго игрока при любой из стратегий (1, 1) и (2, 2) будет больше, чем у первого.
С нулевой суммой и с ненулевой суммой
А | Б | |
А | −1; 1 | 3; −3 |
Б | 0;0 | −2; 2 |
Игра с нулевой суммой |
Игры с нулевой суммой — особый вид игр с постоянной суммой, то есть таких, где игроки не могут увеличить или уменьшить имеющиеся ресурсы, или фонд игры. В этом случае сумма всех выигрышей равна сумме всех проигрышей при любом ходе. Посмотрите направо — числа означают платежи игрокам — и их сумма в каждой клетке равна нулю. Примерами таких игр может служить покер, где один выигрывает все ставки других; реверси, где захватываются фишки противника; либо банальное воровство.
Многие изучаемые математиками игры, в том числе уже упоминавшаяся «Дилемма заключённого», иного рода: в играх с ненулевой суммой выигрыш какого-то игрока не обязательно означает проигрыш другого, и наоборот. Исход такой игры может быть меньше или больше нуля. Такие игры могут быть преобразованы к нулевой сумме — это делается введением фиктивного игрока, который «присваивает себе» избыток или восполняет недостаток средств.
Также игрой с отличной от нуля суммой является торговля, где каждый участник извлекает выгоду. К этому виду относятся такие игры, как шашки и шахматы; в двух последних игрок может превратить свою рядовую фигуру в более сильную, получив преимущество. Во всех этих случаях сумма игры увеличивается.
Кооперативные и некооперативные
Игра называется кооперативной, или коалиционной, если игроки могут объединяться в группы, беря на себя некоторые обязательства перед другими игроками и координируя свои действия. Этим она отличается от некооперативных игр, в которых каждый обязан играть за себя. Развлекательные игры редко являются кооперативными, однако такие механизмы нередки в повседневной жизни.
Часто предполагают, что кооперативные игры отличаются именно возможностью общения игроков друг с другом. Но это не всегда верно, так как существуют игры, где коммуникация разрешена, но участники преследуют личные цели, и наоборот.
Из двух типов игр, некооперативные описывают ситуации в мельчайших деталях и выдают более точные результаты. Кооперативные рассматривают процесс игры в целом.
Гибридные игры включают в себя элементы кооперативных и некооперативных игр.
Например,
игроки могут образовывать группы,
но игра будет вестись в
Параллельные и последовательные
В параллельных играх игроки ходят одновременно, или они не информированы о выборе других до тех пор, пока все не сделают свой ход. В последовательных, или динамических, играх участники могут делать ходы в заранее установленном либо случайном порядке, но при этом они получают некоторую информацию о предыдущих действиях других. Эта информация может быть даже не совсем полной, например, игрок может узнать, что его противник из десяти своих стратегий точно не выбрал пятую, ничего не узнав о других.
С полной или неполной информацией
Важное
подмножество последовательных игр
составляют игры с полной информацией.
В такой игре участники знают
все ходы, сделанные до текущего
момента, равно как и возможные
стратегии противников, что позволяет
им в некоторой степени
В то же время есть интересные примеры игр с полной информацией: шахматы, шашки и другие.
Зачастую понятие полной информации путают со сходным понятием — совершенной информации. Для последнего достаточно лишь знание всех доступных противникам стратегий, знание всех их ходов необязательно.
Игры с бесконечным числом шагов
Игры в реальном мире или изучаемые в экономике игры, как правило, длятся конечное число ходов. Математика не так ограничена, и в частности, в теории множеств рассматриваются игры, способные продолжаться бесконечно долго. Причём победитель и его выигрыш не определены до окончания всех ходов…
Здесь вопрос обычно состоит в том, чтобы найти не оптимальное решение, а хотя бы выигрышную стратегию. (Используя аксиому выбора можно доказать, что иногда даже для игр с полной информацией и двумя исходами — «выиграл» или «проиграл» — ни один из игроков не имеет такой стратегии.)
Дискретные и непрерывные игры
В
большинстве изучаемых игр число игроков,
ходов, исходов и событий конечно, т.е.
они - дискретны. Однако эти составляющие
могут быть расширены на множество вещественных
(материальных) чисел. Игры, включающие
такие элементы, часто называются дифференциальными.
Они всегда связаны с какой-то вещественной
шкалой (обычно — шкалой времени), хотя
происходящие в них события могут быть
дискретными по природе. Дифференциальные
игры находят своё применение в технике
и технологиях, физике [4].
3. Применение теории
игр
Теория игр — это раздел прикладной математики. Чаще всего методы теории игр находят применение в экономике, чуть реже в других общественных науках — социологии, политологии, психологии, этике и других. Начиная с 1970-х годов её взяли на вооружение биологи для исследования поведения животных и теории эволюции. Очень важное значение этот раздел математики имеет для искусственного интеллекта и кибернетики, особенно с проявлением интереса к интеллектуальным агентам.
Нейман и Моргенштерн написали оригинальную книгу, которая содержала главным образом экономические примеры, поскольку экономическому конфликту легче всего придать численную форму. Во время второй мировой войны и сразу после неё теорией игр серьезно заинтересовались военные, которые увидели в ней аппарат для исследования стратегических решений. Далее главное внимание снова стало уделяться экономическим проблемам. В наше время ведется большая работа, направленная на расширение сферы применения теории игр.
Двумя
основными областями применения являются
военное дело и экономика. Теоретико-игровые
разработки применяются при проектировании
автоматических систем управления для
ракетного/противоракетного оружия, выборе
форм аукционов по продаже радиочастот,
прикладном моделировании закономерностей
денежного обращения в интересах центральных
банков, и т.п. Международные отношения
и стратегическая безопасность обязаны
теории игр (и теории принятия решений)
в первую очередь концепцией гарантированного
взаимного уничтожения. Это заслуга плеяды
блестящих умов (в том числе связанных
с RAND Corporation в Санта Монике, Калиф.), дух
которой до высших руководящих постов
дошел в лице Роберта Макнамары. Следует,
правда, признать, что сам Макнамара теорией
игр не злоупотреблял.