Твердение минеральных вяжущих

Автор работы: Пользователь скрыл имя, 13 Ноября 2015 в 01:13, реферат

Описание работы

Минеральные вяжущие вещества представляют собой тонкомолотые порошкообразные материалы (за исключением жидкого стекла), которые при смешивании с водой образуют пластичное тесто, переходящее в результате физико-химических процессов в искусственный камень. Основу производства минеральных вяжущих составляют следующие технологические переделы: добыча сырья, подбор и измельчение сырьевой смеси, термическая обработка и помол готового продукта. На основании минеральных вяжущих получают бетоны и строительные растворы различного назначения, асбестоцементные изделия, красочные составы.

Содержание работы

Минеральные вяжущие вещества .....…………………………………………………………………. 3
Твердение минеральных вяжущих.…………………………………………………………………….. 4
Воздушные минеральные вяжущие вещества..…………………………………………………….6
Воздушная известь..……………………………………………………………………………………………..9
Магнезиальные вяжущие вещества...………………………………………………………………….12
Жидкое стекло, кислотостойкий цемент..……………………………………………………………..13
Гидравлические вяжущие вещества.…………………………………………………………………..14
Гидравлическая известь и романцемент……………………………………………………………..14

Файлы: 1 файл

технология пр-во.docx

— 59.26 Кб (Скачать файл)

Содержание 

Минеральные вяжущие вещества .....…………………………………………………………………. 3

Твердение минеральных вяжущих.…………………………………………………………………….. 4

Воздушные минеральные вяжущие вещества..…………………………………………………….6

Воздушная известь..……………………………………………………………………………………………..9

Магнезиальные вяжущие вещества...………………………………………………………………….12

Жидкое стекло, кислотостойкий цемент..……………………………………………………………..13

Гидравлические вяжущие вещества.…………………………………………………………………..14

Гидравлическая известь и романцемент……………………………………………………………..14

 

 

 

МИНЕРАЛЬНЫЕ ВЯЖУЩИЕ ВЕЩЕСТВА

 

 

Минеральные вяжущие вещества представляют собой тонкомолотые порошкообразные материалы (за исключением жидкого стекла), которые при смешивании с водой образуют пластичное тесто, переходящее в результате физико-химических процессов в искусственный камень. Основу производства минеральных вяжущих составляют следующие технологические переделы: добыча сырья, подбор и измельчение сырьевой смеси, термическая обработка и помол готового продукта. На основании минеральных вяжущих получают бетоны и строительные растворы различного назначения, асбестоцементные изделия, красочные составы.

Применение минеральных вяжущих известно с древности. Примерно в IV в. до н. э. применяли искусственные способы изготовления таких вяжущих веществ, как гипс, известь, путем обжига соответствующих горных пород: природного гипса, известняка. Основной недостаток – низкая водостойкость ограничивала возможности древних строителей, поэтому они не прекращали поиски новых вяжущих, которые бы обеспечивали не только большую прочность, но и водостойкость изделиям. Так при строительстве морских сооружений в 1 в. н. э. в Древнем Риме было замечено, что если известь смешать с тонкомолотой обожженной глиной (бой кирпича и черепицы) или рыхлой вулканической породой – пуццоланой, то полученное на их основе изделие не только приобретает водостойкость, но и будет повышать свою прочность, находясь в воде. Такую известь с добавкой назвали гидравлической. Русские строители называли это вяжущее «цементом» и широко использовали при строительстве Десятинной церкви в Киеве (990 г.), Софийского собора в Киеве (Х в.), стен Московского Кремля (конец XV в.), Петровских верфей (XVIII в). Самым монументальным сооружением, построенным в Беларуси (XI в.) с использованием известкового вяжущего, является Софийский собор, затем Борисоглебовский храм, Евфросиньевский монастырь, Спасский собор (ХП в.) в г. Полоцке, исторические памятники в Несвиже (XVI в.) и другие сооружения.

Проводимые в разных странах многолетние научные исследования в этой области, в частности российскими академиками Севергиным и Шарлевилем, привели к созданию нового вида водостойкого минерального вяжущего – цемента.

В 1825 г. русский военный техник Е. Челиев издает книгу с описанием технологии получения цемента путем обжига до спекания смеси извести и глины, с последующим помолом спекшегося продукта.

Одновременно цемент был изобретен и запатентован англичанином Аспидом, который назвал его «портландцементом» по сходству свойств в затвердевшем состоянии с известным природным строительным камнем, добываемым около города Портленд. До настоящего времени эту технологию производства совершенствуют ученые разных стран. Большой вклад в эту работу внесли академик А.Р. Шуляченко, Н.Н. Ляман, Д.И. Менделеев, А.А. Байков, В.А. Кинд, В.Н. Юнг, И.А. Торопов  и др.

В 1839 г. в России был пущен в действие первый завод по производству портландцемента в Петербурге. В 60-х и последующих годах XIX в. построены заводы в Риге, Новороссийске, Брянске и других городах. Ко времени первой мировой войны в России насчитывалось 60 цементных заводов с годовой производительностью около 1,6 млн. т. цемента. Одновременно сооружались многочисленные предприятия по производству известковых и гипсовых вяжущих. Цементная промышленность Беларуси представлена тремя крупными заводами: ОАО «Красносельскцемент», Кричевский цементный завод и цементный завод в г. Костюковичи, работающими на местном мергелистом сырье. Наличие в республике залежей ангидрита, доломита, мела и известняков обеспечивает сырьем заводы по производству гипса, извести. Крупнейшими из них являются Березовский комбинат в Брестской области, гипсовый завод в г. Минске. На основе кварцевых песков на стеклозаводе «Залесье» Вилейского района выпускают силикат глыбу – промежуточный продукт для получения жидкого стекла.

 

  

 Твердение минеральных вяжущих

В настоящее время твердение минеральных вяжущих рассматривают как сложный физико-химический процесс в системе «вяжущее – вода», заключающийся в преобразовании исходных компонентов в смесь новых минералов, из которых слагается искусственный камень.

Сущность теории твердения минеральных вяжущих обычно выражается следующей последовательностью процессов: растворение –коллоидация – кристаллизация, которая сохраняется только на начальной стадии взаимодействия, а затем все три протекают одновременно, налагаясь один на другой, дополняясь специфическими особенностями, свойственными конкретному вяжущему. Рассмотрим каждый из них в общем виде. Первый – растворение. Любое вещество в большей или меньшей степени растворяется в воде и, находясь в ней, стремится создать свой насыщенный раствор. Минералы, из которых состоят вяжущие, обладают химической активностью по отношению к воде и поэтому они не просто растворяются, а вступают с водой в реакцию гидратации с образованием новых соединений, включающих в свой состав кристаллизационную воду (кристаллогидраты).

Этот процесс протекает до тех пор, пока вся вода не превратится в насыщенный раствор по отношению к новым кристаллогидратам.

Коллоидация характеризуется загустеванием, повышением вязкости смеси в связи с тем, что часть воды, обеспечивающая пластичность, участвует в химической реакции с вяжущим, а другая адсорбируется на поверхности зерен вяжущего. Растворение затормаживается и вокруг каждого зерна образуется студнеобразная, клейковидная масса-гель, обладающая склеивающей способностью, которая тем выше, чем меньше содержится воды. Так как процесс взаимодействия вяжущего с водой продолжается, то постепенно раствор из насыщенного переходит в пересыщенный и из него начинают выкристаллизовываться мельчайшие кристаллы новообразований. Твердение переходит в третий заключительный этап –кристаллизацию, при котором мелкие кристаллы укрупняются, срастаются между собой, образуя жесткую структуру, и весь материал приобретает прочность камня. Скорость твердения в большей степени зависит от растворимости веществ, составляющих вяжущее, и растворимости образующихся в результате реакции с водой соединений. Если растворимость составляющих вяжущее минералов велика, а образующихся соединений мала, то загустевание-схватывание и твердение могут завершиться быстро, в течение минут, часов. Если же растворимость исходных мала, то формирование искусственного камня может продолжаться месяцы и даже годы. Следовательно, ускоряя растворимость вяжущего путем повышения температуры, применения специальных добавок и другими методами можно регулировать скорость образования искусственного камня.

В практике заводского изготовления изделий и крупноразмерных конструкций из бетона и железобетона для ускорения набора прочности применяют специальные камеры тепловлажностной обработки с температурой 70 – 90 °С и автоклавы, работающие в условиях избыточного давления и высокой до 200 °С температуры. Твердение можно также ускорить, затворяя вяжущее не чистой водой, а раствором некоторых солей, которые за счет повышения ионной силы ускоряют растворение вяжущих. Так как скорость получения искусственного камня зависит также от времени выпадения из перенасыщенного раствора первых кристаллов образующихся гидратных соединений, то, следовательно, введя их искусственным путем в смесь «вяжущее – вода» можно ускорить процесс схватывания и твердения.

Большую роль в скорости формирования искусственного камня играет соотношение между количеством воды и вяжущего, которое называют водовяжущим (В/В) или водотвердым (В/Т). Чем больше воды, тем больше времени необходимо для получения насыщенного и перенасыщенного раствора, из которого начнется кристаллообразование, следовательно, тем медленнее будут протекать процессы твердения. Таким образом, снижая В/В, мы тем самым ускоряем набор прочности.

Так как все минеральные вяжущие представляют собой тонкомолотые порошки, следовательно, размер частиц тоже будет влиять на скорость процесса твердения. Чем мельче частицы, тем площадь соприкосновения с водой в единице объема больше, реакции идут полнее и процесс взаимодействия ускоряется.

Последнее, за счет чего можно ускорить реакции, – это целенаправленный подбор состава самого вяжущего. Все рассмотренные способы ускорения набора прочности искусственным камнем используют при возведении зданий и сооружений из бетона, получения изделий различного назначения на основе минеральных вяжущих.

По условию твердения и эксплуатации изделий из искусственного камня минеральные вяжущие подразделяют на воздушные и гидравлические. К вяжущим воздушного твердения относят такие простые по составу вещества, как известковые, низко и высокообжиговые гипсовые, магнезиальные и жидкое стекло. Гидравлические вяжущие состоят из минералов сложного состава, образующих в результате взаимодействия с водой прочный водостойкий искусственный камень. К гидравлическим вяжущим принадлежат: гидравлическая известь, романцемент, разновидности портландцемента и специальные виды цементов.

 

 

Воздушные минеральные вяжущие вещества

Воздушные вяжущие характеризуются сравнительно высокой растворимостью как исходных веществ, так и соединений, которые образуются в результате реакции гидратации. Поэтому изделия из этих вяжущих при контакте с водой теряют свою прочность, а при действии проточной воды размываются – коэффициент размягчения менее 0,5. Следовательно их можно использовать только для производства изделий, эксплуатируемых в воздушно-сухих условиях внутри помещения.

 

 

Гипсовые вяжущие

Гипсовыми вяжущими веществами называют тонкомолотые материалы, состоящие из полуводного гипса(СаS04х0,5Н2О) или ангидрита (СаS04). В качестве сырья используют природный каменный материал – гипс (СаS04х2Н2О), представляющий собой осадочную породу, образовавшуюся примерно 100 – 200 млн. лет назад в результате испарения участков Мирового океана. Кроме этого в качестве дополнительного источника дешевого сырья служат такие отходы химической промышленности, как фосфогипс, борогипс. Получение гипсовых вяжущих основано на способности сырья – двуводного гипса СаS04х2Н2О в процессе нагревания частично или полностью отдавать кристаллизационную воду (дегидратировать) СаS04х2Н2О = СаS04х0,5Н2О+1,5Н2О. По условию тепловой обработки, от которой в дальнейшем зависят свойства полученных веществ, гипсовые вяжущие подразделяют на низкообжиговые и высокообжиговые. К низкообжиговым относятся строительный и высокопрочный гипс. Строительный гипс, полученный путем «варки» сырья при температуре 140 – 160 °С, представляет собой мелкие пластинчатые кристаллы, требующие большого количества воды (В/Г от 0,5 до 0,7) для получения пластичного теста. В связи с тем, что в химической реакции участвует около 19 % воды, а 30 – 50 % в процессе твердения испаряется, гипсовый камень обладает высокой пористостью, легкостью, пониженной теплопроводностью и звукопоглощением. Максимальная прочность изделий не превышает 25 МПа. С целью снижения водопотребности и повышения прочности при изготовлении гипсовых изделий вводят добавки-пластификаторы, обеспечивающие заданную пластичность при уменьшении расхода воды на 20 %. Повысить прочность гипсовых изделий можно также за счет использования так называемого высокопрочного крупнокристаллического гипса, который получают путем обработки сырья в специальных автоклавах насыщенным паром при температуре 123 °С. Его водогипсовое отношение равно 0,3 – 0,4, следовательно свободной испаряющейся воды содержится значительно меньше и изделия получаются более плотные и прочные  
(до 40 МПа).

Процесс твердения (гидратации) гипса проходит по следующей реакции: СаS04х0,5Н2О+1,5Н2О = СаS04х2Н2О

Низкообжиговые гипсовые вяжущие характеризуются быстрым схватыванием и твердением, что сопровождается большим выделением тепла (до 122 кДж/кг). Начало схватывания, контролируемое по загустеванию гипсового теста нормальной густоты (НГ), должно наступать, согласно требованиям ГОСТ 125-79 (с изм.), для быстротвердеющего не ранее  
2 мин (А), нормальнотвердеющего – 6 мин (Б) и медленнотвердеющего – 20 мин (В). Конец схватывания – образование искусственного камня, соответственно не позднее 15, 30 мин после затворения гипса водой и для медленнотвердеющего не нормируется.

В зависимости от применяемой технологии строительных работ на объекте или технологического процесса получения гипсовых изделий на заводе твердение замедляют или ускоряют путем введения специальных добавок.Качество гипса контролируют в лаборатории (ГОСТ 125-79) по следующим показателям: тонкости помола – остаток на сите 02 (не более 23 % – грубого (I), 14 % – среднего (II) и 2 % – тонкого (III) помола), нормальной густоте (НГ) или водопотребности гипсового теста для обеспечения заданной пластичности, срокам схватывания, пределу прочности на изгиб и сжатие. По последним показателям гипсу присуждают следующие марки: Г-2, Г-3, Г-4, Г-5, Г-6, Г-7, Г-10, Г-13, Г-16, Г-19, Г-22, Г-25. Число показывает предел прочности при сжатии в МПа образцов балочек размером 40х40х160 мм, отформованных из гипсового теста определенной пластичности (НГ) и твердеющих на воздухе в течение 2 часов. При этом предел прочности при изгибе должен составлять соответственно от 1,2 до  
8 МПа. В условное обозначение гипсового вяжущего входят марка по прочности, индекс сроков твердения и степени помола. Например, Г-5АII – гипс с прочностью на сжатие не менее 5 МПа; сроками схватывания: начало до 6 мин и конец не позднее 15 мин; тонкостью помола до 14 %.

Особенностью полуводного гипса по сравнению с другими вяжущими является способность гипсового теста при твердении расширяться до 1 %. Так как увеличение объема происходит еще в незатвердевшей массе, то она хорошо уплотняется и заполняет форму. Это обеспечивает широкое применение гипса для отливки художественных изделий сложной конфигурации. Высокое содержание кристаллизационной воды позволило эффективно использовать гипсовые изделия и штукатурные растворы на его основе как огнезащитные средства. Большое значение, особенно в жилищном строительстве, имеет также способность гипсовых изделий при повышении влажности поглощать влагу, а при снижении отдавать в окружающую среду, регулируя тем самым микроклимат в помещении. Поэтому гипсовые крупноразмерные материалы в виде гипсокартонных или гипсоволокнистых листов широко используют в строительстве в качестве сухой штукатурки, которая крепится к стенам при помощи специальных мастик. Гипсокартонные листы представляют собой отделочный материал, изготовленный из строительного гипса, защищенного с двух сторон специальным картоном. Толщина листов составляет от 6,5 до 24,0 мм. В зависимости от свойств их подразделяют на обычные (ГКЛ), влагостойкие (ГКЛВ), с повышенной сопротивляемостью воздействию открытого пламени (ГКЛО) и влаго-, огнестойкие (ГКЛВО). Этот материал нашел широкое использование в качестве огнезащиты конструкций, при выполнении подвесных потолков и устройстве перегородок. Современные модульные перегородки, которые можно демонтировать и переносить в любое место помещения, состоят, в частности, из оцинкованного стального каркаса, по обе стороны которого расположены листы толщиной до 13 мм, соединенные алюминиевыми профилями. Листы выполнены из гипсокартона с виниловым покрытием (гипсовинил). Этот материал обладает декоративностью, легко моется, неогнеопасен поэтому его целесообразно применять для отделки коридоров, фойе, холлов. В гипсоволокнистых плитах, получаемых методом проката дисперсной арматурой, снижающей хрупкость изделий, служит равномерно распределенное в гипсовой массе растительное волокно: льнокостра или макулатура. Для внутренней отделки помещений выпускают листы с декоративным покрытием из поливинилхлоридных пленок, текстурной бумаги под мрамор, дерева или отделанные лакокрасочными составами. Их применение исключает «мокрый» процесс внутренней отделки – оштукатуривание, что позволяет значительно быстрее сдавать объекты в эксплуатацию.

Информация о работе Твердение минеральных вяжущих