Автор работы: Пользователь скрыл имя, 10 Апреля 2010 в 09:18, Не определен
Введение…………………………………………………………………..3
Макроэлементы…………………………………………………………..4
Микроэлементы…………………………………………………………..7
Другие микроэлементы…………………………………………………14
Заключение………………………………………………………………15
Библиографический список…………………………………………….16
Кальций
и фосфор с точки зрения их значения
в питании тесно связаны, и
поэтому будут обсуждаться
Калий обнаружен
в высоких концентрациях внутри
клеток и необходим для передачи
нервных импульсов, жидкостного
баланса и мышечного
В отличие от калия, натрий встречается, главным образом, во внеклеточной жидкости, но, как и калий, он имеет большое значение для нормальной физиологической активности. Вместе с хлором эти элементы представляют собой основные электролиты, растворенные в водной среде организма. Обычная соль (хлорид натрия) - это наиболее распространенная форма этих минеральных веществ, в которой они добавляются в пищу, поэтому пищевые рекомендации обычно выражаются в форме рекомендаций по содержанию в рационе хлорида натрия. Как и в случае калия, маловероятно, чтобы обычный корм содержал эти минеральные вещества в недостаточном количестве.
Магний обнаружен как в мягких тканях организма, так и в костях. Нормальное функционирование сердечной и скелетной мышц, а также нервной ткани зависит от правильного соотношения между кальцием и магнием. Магний также играет важную роль в метаболизме натрия и калия и ключевую роль во многих существенных ферментативных реакциях, в особенности тех, которые связаны с энергетическим обменом. Дефицит магния проявляется в мышечной вялости и, в тяжелых случаях, в судорогах. Тем не менее, недостаточное содержание магния в пище маловероятно. Наоборот, слишком большое потребление магния кошками связано с широкой распространенностью заболеваний нижних отделов мочевых путей у кошек (Markwell and Gaskell, 1991).
Железо, по-видимому, наиболее изученный из микроэлементов, присутствующих в пище. Его функциям и потребностям в нем, в частности, у собак посвящено множество работ. Железо входит в состав гемоглобина и миоглобина, которые играют важнейшую роль в транспорте кислорода. Оно также входит в состав многих ферментов (гемсодержащих), участвующих в процессе дыхания на клеточном уровне, т.е. в реакциях окисления компонентов пищи с образованием химической энергии. Известно, что на всасывание железа влияет ряд факторов. Двухвалентное железо всасывается лучше, чем трехвалентное, а железо, содержащееся в пищевых продуктах животного происхождения, всасывается лучше, чем железо из растительных источников. Результаты некоторых исследований физиологии человека позволяют предположить, что включение в пищу соевого белка снижает всасывание железа и других микроэлементов (цинка и марганца), и важно, чтобы концентрация железа в продуктах с высоким содержанием соевого белка, всегда была выше рекомендуемой нормы. Дефицит железа приводит к малокровию, типичными клиническими симптомами которого являются вялость, слабость и быстрая утомляемость. И наоборот, железо, как и большинство микроэлементов, токсично, если оно присутствует в избыточном количестве. Токсичное действие железа на собак, как было показано во многих работах, проявляется в потере аппетита (анорексии) и снижении веса. Из всех изученных солей железа сульфат железа (II) - наиболее токсичное соединение. Это, вероятно, объясняется высокой степенью его всасывания. Оксид железа намного менее токсичен вследствие его малой биологической распространенности.
Медь участвует во многих биологических функциях и входит в состав многих ферментативных систем, включая систему, необходимую для образования пигмента меланина. Метаболизм меди очень тесно связан с метаболизмом железа, и ее дефицит ухудшает всасывание и транспорт железа, а также понижает синтез гемоглобина. Таким образом, недостаток меди в рационе может быть причиной возникновения анемии даже в условиях нормального потребления железа. Вследствие недостатка меди могут происходить, также нарушения в костной ткани, и в этом случае причина, видимо, связана с понижением активности медьсодержащего фермента, что приводит к понижению твердости и прочности коллагена кости. Удивительно, но и избыток меди также может вызвать анемию, которая, вероятно, является результатом конкуренции между медью и железом за участки всасывания на стенках кишечника. Известно, что у бедлингтон-терьеров встречается необычное заболевание, которое может передаваться по наследству. Оно возникает вследствие токсичного влияния избытка меди в печени, что приводит к гепатиту и циррозу. Заболевание идентифицировано и у других пород собак, включая вест-хайленд-уайт терьеров и доберман-пинчеров (Thornburg et al., 1985a, b). По-видимому, для этих пород собак лучше исключить продукты с высоким содержанием меди и избегать использования в рационе медьсодержащих минеральных добавок.
О специфических потребностях домашних животных в марганце известно немного, однако накоплено достаточно информации о том, что он имеет существенное значение для животных. Известно, что марганец активирует многие металлсодержащие ферментативные системы в организме, и поэтому вовлечен в самые разнообразные реакции. Hедостаток марганца проявляется в замедлении развития, снижении репродуктивной способности и нарушении липидного обмена. Такие последствия, подобно последствиям дефицита меди, вероятно, вызваны инактивацией или нарушением механизма одной или более ферментативных реакций, связанных с этими физиологическими процессами. Hесмотря на то, что марганец считается одним из наименее токсичных микроэлементов, все же имеется информация о его токсичности в отношении некоторых видов, включая кошек, у которых он вызывает понижение фертильности и частичный альбинизм у некоторых сиамских кошек. Еще одним действием избытка марганца является влияние на образование гемоглобина, причем механизм этого действия, по-видимому, схож с таковым для меди, описанным ранее, т.е. связан с конкуренцией с железом за участки всасывания в пищеварительном тракте.
Функции цинка можно разделить на две большие категории: ферментативная функция и белковый синтез. Цинк необходим всем животным, но потребность в нем определяется содержанием других компонентов рациона. Hапример, высокое содержание в пище кальция или рацион на основе растительных белков могут резко повысить потребность в цинке, природа этого влияния может быть такой же, как и в случае всасывания железа, о чем сообщалось ранее. Доступность цинка снижается также в присутствии в пище фитиновой кислоты. Это сложное органическое соединение, содержащее фосфор, может связывать такие микроэлементы, как цинк, а, следовательно, снижать их доступность для животного. Фитиновая кислота и ее производные (фитаты) были обнаружены, в частности, в злаках и родственных продуктах, и, следовательно, при их использовании необходимо проявлять осторожность, чтобы обеспечить достаточную концентрацию цинка. Hапример, Van den Broek и Thoday (1986) сообщили о симптомах дефицита цинка у собак, которых кормили сухим кормом, полученном на основе злаков, содержащем цинк в концентрациях, превышающих минимальные потребности. Дефицит цинка проявляется в замедленном развитии, анорексии, тестикулярной атрофии, кахексии и кожных заболеваниях. Хотя все питательные компоненты имеют большое значение, взаимосвязь между содержанием цинка и состоянием кожи и волосяного покрова делает этот микроэлемент особенно важным для домашнего животного. Это объясняется тем, что при имеющемся недостатке цинка не всегда можно сказать, что животное плохо себя чувствует; однако состояние его кожи или шерсти в этом случае будет неудовлетворительным и существенно испортит его внешний вид. Цинк относительно мало токсичен. Его метаболизм взаимосвязан со всасыванием и утилизацией железа и меди (особенно меди), поэтому уровень неблагоприятного влияния высокого потребления цинка зависит от содержания в рационе этих микроэлементов. Оказалось, что при условии нормального содержания в рационе железа и меди, концентрация цинка, до восьми раз превышающая минимальную потребность, не окажет неблагоприятного влияния на организм.
Единственной изученной функцией йода является его участие в синтезе гормонов, которые выделяются щитовидной железой и регулируют скорость обмена веществ в организме животного. Одним из факторов, влияющих на количество секретируемых щитовидной железой гормонов, является достаточный уровень йода. В отсутствие необходимого количества йода щитовидная железа повышает свою активность для того, чтобы компенсировать недостаток йода в организме. В результате щитовидная железа (которая расположена в области шеи) увеличивается в размерах и опухает. Такое состояние известно под названием "зоб", появление которого является основным признаком дефицита йода в организме. Тем не менее существуют и другие факторы, которые также ответственны за появление зоба. К ним относятся возбудители инфекционных заболеваний, которые могут присутствовать в пище (агенты, вызывающие зоб) и которые ингибируют синтез, выделение или общую эффективность гормонов щитовидной железы, а также генетически обусловленные нарушения в ферментативных системах, ответственных за биосинтез этих гормонов. В организме человека сильное понижение активности щитовидной железы (гипотиреоз) приводит к развитию у детей кретинизма, а у взрослых - микседемы. Гипотиреоз был обнаружен у собак, а дефицит йода наблюдался также у домашних кошек, птиц и лошадей. Клинические симптомы проявляются в патологии кожного и волосяного покрова, вялости, апатии и сонливости. Кроме того, могут наблюдаться нарушения метаболизма кальция и патология репродуктивной функции с резорпбцией плода. Поступление избытка йода может оказать токсическое действие на организм. Сообщалось, что у кошек, страдающих гипотиреозом, большие дозы йода (примерно в 150 раз превышающие минимальные потребности), вызывали признаки таких заболеваний, как анорексия, лихорадка и потерю веса (NRC, 1986). Hа других животных большие дозы йода оказывали действие, схожее с его дефицитом. Высокие дозы могут в какой-то мере ослабить синтез гормонов щитовидной железы и стать причиной так называемой йодной микседемы или диффузного тиреотоксического зоба. Лошади, по-видимому, особенно чувствительны к действию избытка йода, причем максимальные безвредные концентрации его для них составляют лишь одну десятую от таковых для других млекопитающих.
По иронии судьбы впервые на селен обратили внимание из-за его токсичности и его существенная роль в питании млекопитающих обнаружена относительно недавно, примерно 35 лет назад. При обсуждении биохимической роли селена необходимо принимать во внимание тесную связь этого элемента с витамином Е и серосодержащими аминокислотами метионином и цистеином. Взаимосвязь селена и витамина Е имеет особое значение, поскольку один компонент питания может компенсировать дефицит другого. Тем не менее, показано, что у многих животных селен не может быть полностью заменен витамином Е и имеет отдельную, уникальную функцию. Известно, что селен является обязательным компонентом глутатионпероксидазы, которая защищает клетки от разрушения окислителями (в частности, пероксидами липидов), выделяющимися в организме в ходе разнообразных метаболических процессов. Для образования этого фермента требуются серосодержащие аминокислоты; витамин Е, по-видимому, действует внутри мембран, предотвращая окисление липидов. В этом смысле, функции этих трех компонентов пищи тесно связаны. тОчевидно, что функции селена очень сложны, и до сих пор многое об этом микроэлементе нам не известно. Hапример, он может участвовать в процессах, не имеющих отношение к его функции компонента глутатионпероксидазы. Показано, что селен защищает организм от отравления свинцом, кадмием и ртутью, кроме того, в некоторых как экспериментальных, так и клинических исследованиях его применяли в качестве противоракового препарата. Дефицит селена может иметь самые разнообразные последствия. Одним из них является дистрофия ске- летных и сердечных мышц, наблюдаемая у собак. Влияние недостатка селена на другие виды животных проявляется в нарушении репродуктивной функции и появлении отека. Как упоминалось ранее, селен в больших дозах обладает высокой токсичностью, и результаты проведенных исследований позволяют предположить, что разница между рекомендуемой нормой приема и токсичной дозой может быть достаточно мала. Следовательно, неразумные добавки к пищевых продуктам селена могут быть очень опасны.
Кобальт входит в состав витамина B12, и это, по-видимому, является его единственной биологической функцией в организме собаки и кошки. В лабораторных условиях кобальт может заменять цинк в ряде цинксодержащих ферментов, однако неизвестно, имеет ли это обстоятельство какое-либо биологическое значение. В организме лошади витамин B12 может синтезироваться бактериями слепой и толстой кишки в присутствии кобальта. В организме собаки и кошки этот синтез может иметь лишь ограниченное значение. Вероятно, для того чтобы играть существенную роль в питании, кобальт должен потребляться собакой и кошкой, главным образом, в форме витамина В12. В условиях достаточного потребления витамина В12 вряд ли может возникнуть необходимость в добавках кобальта. Витамин В12 станет предметом более подробного обсуждения в этой главе позднее.