Сварка аустенитных сталей

Автор работы: Пользователь скрыл имя, 11 Декабря 2014 в 20:06, реферат

Описание работы

Высоколегированные стали и сплавы являются важнейшими материалами, широко применяемыми в химическом, нефтяном, энергетическом машиностроении и других отраслях промышленности для изготовления конструкций, работающих в широком диапазоне температур. Благодаря высоким механическим свойствам при отрицательных температурах высоколегированные стали и сплавы применяют в ряде случаев и как хладостойкие.

Содержание работы

Характеристика материала 20Х12ВНМФ……..…………..…………..…..…….3
Особенности сварки стали 20Х12ВНМФ…………………..…………….………........4
Ручная дуговая сварка……..……………………..……………………..……….8
Сварка под флюсом………………………….…………………………...……...9
Электрошлаковая сварка…………………………………………………..….....11
Сварка в среде защитных газов.………….………………………………….….13
Электронно-лучевая сварка…………………………………………………….17
Список литературы……….………...……………………………

Файлы: 1 файл

Реферат.docx

— 56.46 Кб (Скачать файл)

Электрошлаковая сварка.

 

Пониженная чувствительность к образованию горячих трещин, позволяющая получать аустенитные швы без трещин, объясняется особенностями электрошлаковой сварки: малой скоростью перемещения источника нагрева, характером кристаллизации металла сварочной ванны и отсутствием в стыковых соединениях больших угловых деформаций. Однако длительное пребывание металла при 1200—1250 0С, приводя к необратимым изменениям в его структуре, снижает прочностные и пластические свойства околошовной зоны, что повышает склонность сварных соединений теплоустойчивых сталей к локальным (околошовным) разрушениям в процессе термической обработки или эксплуатации при повышенных температурах. При сварке коррозионно-стойких сталей перегрев стали в околошовной зоне может вызвать ножевую коррозию, поэтому следует производить термическую обработку сварных изделий (закалку или стабилизирующий отжиг).

Для электрошлаковой сварки коррозионно-стойких сталей используют флюсы АНФ-6, АНФ-7, АНФ-8, 48-ОФ-6, АНФ-14и др., а для жаростойких сталей — флюсы АНФ-Ш, АНФ-7, АНФ-8 и высокоосновный АН-292. При сварке жаростойких сталей двухфазным швом типа Х25Н13 можно применять низкокремнистые флюсы АНФ-14 и АН-26. Применение фторидных безокислительных флюсов, особенно при сварке жаропрочных сталей и сплавов, не гарантирует угара легкоокисляющихся легирующих элементов (титана; марганца и др.) в результате проникновения кислорода воздуха через поверхность шлаковой ванны; это вызывает необходимость в некоторых случаях защищать поверхность шлаковой ванны путем обдува ее аргоном.

Электрошлаковую сварку можно выполнять проволокой диаметром 3 мм или пластинчатыми электродами толщиной 6—20 мм. Изделия большой толщины со швами небольшой протяженности целесообразнее сваривать пластинчатым электродом. Изготовлять пластинчатый электрод более просто, чем проволоку, но сварка проволокой обеспечивает возможность изменения формы металлической ванны и характера кристаллизации шва, что способствует получению швов без горячих трещин. Однако жесткость сварочной проволоки затрудняет длительную и надежную работу токоподводящих и подающих узлов сварочной аппаратуры.

 

 

 

Сварка в защитных газах.

 

В качестве защитных используют инертные (аргон, гелий) и активные (углекислый газ, азот) газы, а также различные смеси инертных или активных газов и инертных с активными.

Сварку в защитных газах можно использовать для соединения материалов различной толщины (от десятых долей до десятков миллиметров). Применение защитных газов с различными теплофизическими свойствами и их смесей изменяет тепловую эффективность дуги и условия ввода тепла в свариваемые кромки и расширяет технологические возможности процесса сварки. При сварке в инертных газах повышается стабильность дуги и снижается угар легирующих элементов что важно при сварке высоколегированных сталей. Заданный химический состав металла шва можно получить путем изменения состава сварочной (присадочной) проволоки и доли участия основного металла в образовании шва, когда составы основного и электродного металлов значительно различаются, или путем изменения характера металлургических взаимодействий за счет значительного изменения состава защитной атмосферы при сварке плавящимся электродом. Сварка в среде защитных газов обеспечивает формирование швов в различных пространственных положениях, что позволяет применять этот способ вместо ручной дуговой сварки покрытыми электродами.

Сварку аустенитных сталей в инертных газах выполняют неплавящимся (вольфрамовым) или плавящимся электродом.

Сварку вольфрамовым электродом производят в аргоне по ГОСТ 10157 и гелии или их смесях и применяют обычно для материала толщиной до 5—7 мм. Однако в некоторых случаях, например при сварке неповоротных стыков труб, применяют и при большой толщине стенки (до 100 мм и более). Применять этот способ необходимо также для сварки корневых швов в разделке при изготовлении ответственных толстостенных изделий.

В зависимости от толщины и конструкции сварного соединения сварку вольфрамовым электродом производят с присадочным материалом или без него. Процесс осуществляют вручную с использованием специальных горелок или автоматически на постоянном токе прямой полярности. Исключение составляют стали и сплавы с повышенным содержанием алюминия, когда для разрушения поверхностной пленки окислов, богатой алюминием, следует использовать переменный ток.

Сварку можно выполнять непрерывно горящей или импульсной дугой. Импульсная дуга уменьшает протяженность околошовной зоны и коробление свариваемых кромок, а также обеспечивает хорошее формирование шва на материале малой толщины. Особенности кристаллизации металлов сварочной ванны при этом способе сварки способствуют дезориентации структуры, что уменьшает вероятность образования горячих трещин, однако может способствовать образованию околошовных надрывов. Для улучшения защиты и формирования корня шва используют поддув газа, а при сварке корневых швов на металле повышенных толщин применяют и специальные расплавляемые вставки. При сварке вольфрамовым электродом в инертных газах погруженной дугой увеличение доли тепла, идущей на расплавление основного металла, позволяет без разделки кромок, за один проход сваривать металл повышенной толщины. Однако околошовная зона расширяется, и возникает опасность перегрева металла.

Высоколегированные стали сваривают плазменной сваркой. Преимуществами этого способа являются чрезвычайно малый расход защитного газа, возможность получения плазменных струй различного сечения (круглой, прямоугольной и т.д) и изменения расстояния от плазменной горелки до изделия. Плазменную сварку можно использовать как для тонколистовых материалов, так и для металла толщиной до 12 мм. Применение ее для соединения сталей большей толщины затрудняется из-за возможности образования в швах подрезов.

Сварку плавящимся электродом производят в инертных, а также активных газах или смеси газов. При сварке высоколегированных сталей, содержащих легкоокисляющиеся элементы (алюминий, титан и др.), следует использовать инертные газы, преимущественно аргон, и вести процесс на плотностях тока, обеспечивающих струйный перенос электродного металла. При струйном переносе дуга имеет высокую стабильность, и практически исключается разбрызгивание металла, что важно для формирования швов в различных пространственных положениях и для ликвидации очагов коррозии, связанных с разбрызгиванием при сварке коррозионно-стойких и жаростойких сталей. Однако струйный перенос возможен на токах выше критического, при которых возможно образование прожогов при сварке тонколистового металла. Добавка в аргон до 3—5% О2 и 15—20% СО2уменьшает критический ток, а создание при этом окислительной атмосферы в зоне дуги снижает вероятность образования пор, вызванных водородом. Однако при сварке в указанных смесях газов увеличивается угар легирующих элементов, а при добавке углекислого газа возможно науглероживание металла шва. Добавкой к аргону 5—10% N может быть повышено его содержание в металле шва. Азот является сильным аустенизатором, и таким образом можно изменить структуру металла шва. Для сварки аустенитных сталей находит применение импульсно-дуговая сварка плавящимся электродом в аргоне и смесях аргона с кислородом и с углекислым газом, обеспечивающая соединение малых толщин и струйный перенос металла при прохождении импульса тока. Одновременно импульсно-дуговая сварка вызывает измельчение структуры шва и снижение перегрева околошовной зоны, что повышает стойкость сварного соединения против образования трещин.

При сварке в углекислом газе низкоуглеродистых высоколегированных сталей с использованием низкоуглеродистых сварочных проволок, при исходной концентрации углерода в проволоке менее 0,07%, содержание углерода в металле шва повышается до 0,08—0,12%. Этого достаточно для резкого снижения стойкости металла шва к межкристаллитной коррозии. Однако науглероживание металла шва в некоторых случаях при энергичных карбидообразователях (титане, ниобии) может оказать благоприятное действие при сварке жаропрочных сталей за счет увеличения в структуре количества карбидной фазы.

Окислительная атмосфера, создаваемая в дуге за счет диссоциации углекислого газа, вызывает повышенное (до 50%) выгорание титана и алюминия. Несколько меньше выгорают марганец, кремнии и другие легирующие элементы, а хром не окисляется. Поэтому при сварке коррозионно-стойких сталей в углекислом газе применяют сварочные проволоки, содержащие раскисляющие и карбидообразующие элементы (алюминий, титан и ниобий). Другим недостатком сварки в углекислом газе является большое разбрызгивание металла (потери достигают 10—12%) и образование на поверхности шва плотных пленок окислов, прочно сцепленных с металлом. Это может резко снизить коррозионную стойкость и жаростойкость сварного соединения. Для уменьшения возможности налипания брызг на основной металл следует применять специальные эмульсии, наносимые на кромки перед сваркой, а для борьбы с окисной пленкой эффективна подача в дугу небольшого количества фторидного флюса типа АНФ-5. Применение импульсной сварки также позволяет несколько снизить разбрызгивание. Сварка плавящимся электродом в углекислом газе производится на полуавтоматах и автоматах.

Сварочные проволоки, созданные для сварки в углекислом газе высоколегированных аустенитных сталей, обеспечивают требуемую коррозионную стойкость и механические свойства за счет повышенного содержания титана, ниобия и элементов ферритизаторов — кремния, алюминия, хрома. Например, для сварки сталей типа 12Х18Н10Т используют проволоки Св-07Х18Н9ТЮ, Св-08Х20Н9С2БТЮ, для сталей типа 12Х18Н12Т — проволоку Св-08Х25Н13БТЮ, а для хромоникелемолибденовых сталей — проволоки Св-06Х19Н10МЗТ и Св-06Х20Н11МЗТБ.

 

Электронно-лучевая сварка.

 

ЭЛС позволяет получать сварные соединения с высоким качеством сварного шва, практически без неустранимых дефектов, обеспечивая полную механизацию сварочного процесса и повышение производительности труда в 15–20 раз по сравнению с ручными дуговыми способами сварки.

Высокое качество сварных соединений из жаропрочного сплава 20Х12ВНМФ обеспечивает только ЭЛС. Этот эффективный способ соединения металлов основан на использовании кинетической энергии электронов, движущихся с большой скоростью в вакууме. Являясь разновидностью наиболее распространенного способа сварки плавлением, электронно-лучевая сварка вместе с тем имеет качественные отличия от всех ранее известных методов сварки. Эти отличия обусловлены двумя главными факторами: применением нового мощного концентрированного источника тепла и практически полным отсутствием газов, окружающих зону сварки. Большая концентрация энергии в малом пятне делает возможной сварку с необычным для электронно-дуговых методов соотношением глубины к ширине проплавления (до 20:1 и более), а также при малых значениях погонной энергии (не более 20% от дуговой сварки). ЭЛС выполняется, как правило, в вакуумных камерах при давлении остаточных газов порядка 1·10-3 Па. Такая среда намного чище, чем в аргоне. При сварке в вакууме исключается загрязнение шва газами и обеспечивается максимальная пластичность и вязкость сварных соединений.

Технологический диапазон для целей нагрева, плавления, испарения составляет 104-5·108 Вт/см2. Сварка металлов малых толщин (до 3-х мм) ведется с удельной мощностью 104 Вт/см2, когда испарение с поверхности сварочной ванны незначительно. Однопроходная сварка металлов больших толщин (до 200–300 мм) требует удельной мощности 105-106 Вт/см2. В этом случае проникновение электронного луча на большую глубину сопровождается испарением металла и формированием канала проплавления, на стенках которого рассеивается практически вся мощность электронного луча. Канал проплавления, поверхность которого сильно перегрета, относительно температуры плавления металла и может достигать температуры кипения, движется через толщу металла, образуя по всей глубине канала область расплава металла, которая перемещается в хвостовую часть ванны и там кристаллизуется.

Высокая концентрация энергии в луче позволяет получать при больших скоростях ЭЛС узкие и глубокие сварные швы с минимальной зоной термического влияния и высокими механическими свойствами металла шва и околошовной зоны.

Эффективный КПД ηи изменяется в пределах от 70 до 90% и практически не зависит от энергии первичных электронов; он зависит только от атомного номера обрабатываемого материала.

Как правило, при ЭЛС не нужны присадочные материалы, разделки кромок, а следовательно уменьшается перевод металла в стружку и затраты на механическую обработку. Повышаются качество и механические свойства металла шва за счет дегазации в вакууме и мелкозернистой структуры в металле шва и зоне термического влияния, которая примерно в несколько раз уже, чем при дуговых способах сварки.

Высокая концентрация энергии в луче обеспечивает получение швов не только с минимальной зоной расплавления металла, но и соединений, металл которых в околошовной зоне не претерпевает значительных изменений вследствие ввода минимального количества тепла и значительных скоростей охлаждения. Отсутствие значительной протяженности зоны термического влияния исключает недостатки, возникающие при эксплуатации конструкций, вызванные изменением физико-механических свойств металла в околошовной зоне.

При сварке электронным лучом проплавление имеет форму конуса (рис. 1.). Плавление металла происходит на передней стенке кратера, а расплавляемый металл перемещается по боковым стенкам к задней стенке, где он и кристаллизуется.

 

Рис. 1. Схема переноса жидкого металла при электронно-лучевой сварке: 1-электронный луч; 2 – передняя стенка кратера; 3 – зона кристаллизации; 4 – путь движения жидкого металла

Глубокое проплавление металла при малой погонной энергии, имеющее место при сварке электронным лучом, обуславливает значительно большую скорость отвода тепла от зоны сварки, что обеспечивает увеличение скорости кристаллизации малой по объему сварочной ванны с получением мелкозернистого строения металла шва, по своим свойствам мало отличающегося от основного металла. Ввод значительно меньшего количества тепла, имеющего место при ЭЛС, дает возможность во много раз уменьшить деформации изделий по сравнению с дуговым способом сварки.

Электронный луч является легко управляемым источником тепла при сварке, что позволяет в широких пределах и очень точно регулировать температуру нагрева изделия, легко перемещать зону нагрева по изделию и переносить энергию на значительные расстояния.

Установлено, что при использовании вакуума в качестве защитной среды при сварке имеется принципиальная возможность уменьшить содержание газов в некоторых металлах за счет процессов дислокации окислов, нитридов и гибридов. Наиболее легко из металлов удаляется водород, даже в том случае, если он находится в связанном состоянии. Большинство соединений металла с водородом уже при относительно низких температурах нагрева разлагается. Таким образом, в условиях сварки в вакууме большая часть водорода, содержащегося в металле, может быть удалена из металла.

Резко уменьшаются сварочные деформации и напряжения первого рода, что зачастую позволяет изготавливать изделия без правки и дополнительной механической обработки. Появляется возможность местной термической обработки, в том числе и сварных соединений, одновременно со сваркой.

 Сварка толстостенных  конструкций электронным лучом  является наиболее экономичной  по сравнению с любым видом  сварки. Скорость сварки электронным  лучом для толщин более 100 мм составляет 2, 5–5, 0 м/ч, что превосходит скорость сварки при электрошлаковом процессе более, чем в 5 раз и в 10–15 раз при автоматической многослойной сварке под флюсом. Особенно эффективно применение электронного луча для сварки толстостенных конструкций из жаропрочных сталей из-за низкой теплопроводности сплава, благодаря чему удается получать узкие швы при больших толщинах свариваемых деталей, кроме того, очень благоприятно для данной стали отсутствие вредных газов при сварке в вакууме.

Исследования ученых показали, что при электронно-лучевой сварке жаропрочного сплава 20Х12ВНМФ толщиной до 200 мм структура шва мелкозернистая, зона термического влияния узкая (1–2,5 мм), а статические характеристики при растяжении сварного соединения не ниже соответствующих характеристик основного материала. Соединения, полученные сваркой высококонцентрированными источниками энергии, разрушаются по основному металлу. В псевдо-α-сплавах остаточные напряжения наиболее высоки. Научные исследования также показали, что при ЭЛС образуются соединения с более высоким пределом выносливости, чем при аргонодуговой сварке. При немногочисленных усталостных испытаниях сварных соединений, выполненных электронно-лучевой сваркой, разрушение сварных соединений по основному металлу объясняются высокими напряжениями или перераспределением водорода при сварке, вызывающем охрупчивание металла в зоне разрушения.

Информация о работе Сварка аустенитных сталей