Сварка аустенитных сталей

Автор работы: Пользователь скрыл имя, 11 Декабря 2014 в 20:06, реферат

Описание работы

Высоколегированные стали и сплавы являются важнейшими материалами, широко применяемыми в химическом, нефтяном, энергетическом машиностроении и других отраслях промышленности для изготовления конструкций, работающих в широком диапазоне температур. Благодаря высоким механическим свойствам при отрицательных температурах высоколегированные стали и сплавы применяют в ряде случаев и как хладостойкие.

Содержание работы

Характеристика материала 20Х12ВНМФ……..…………..…………..…..…….3
Особенности сварки стали 20Х12ВНМФ…………………..…………….………........4
Ручная дуговая сварка……..……………………..……………………..……….8
Сварка под флюсом………………………….…………………………...……...9
Электрошлаковая сварка…………………………………………………..….....11
Сварка в среде защитных газов.………….………………………………….….13
Электронно-лучевая сварка…………………………………………………….17
Список литературы……….………...……………………………

Файлы: 1 файл

Реферат.docx

— 56.46 Кб (Скачать файл)

Содержание

Характеристика материала 20Х12ВНМФ……..…………..…………..…..…….3

Особенности сварки стали 20Х12ВНМФ…………………..…………….………........4

Ручная дуговая сварка……..……………………..……………………..……….8

Сварка под флюсом………………………….…………………………...……...9

Электрошлаковая сварка…………………………………………………..….....11

Сварка в среде защитных газов.………….………………………………….….13

Электронно-лучевая сварка…………………………………………………….17

Список литературы……….………...…………………………………………....22

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Характеристика материала(20Х12ВНМФ).

 

Высоколегированные стали и сплавы являются важнейшими материалами, широко применяемыми в химическом, нефтяном, энергетическом машиностроении и других отраслях промышленности для изготовления конструкций, работающих в широком  диапазоне температур. Благодаря высоким механическим свойствам при отрицательных температурах высоколегированные стали и сплавы применяют в ряде случаев и как хладостойкие.

Сплав 20Х12ВНМФ относится к жаропрочным высоколегированным сталям.

Сплавы этого класса имеют ряд технологических преимуществ: способные работать в нагруженном состоянии при высоких температурах в течение определенного времени и обладающие при этом достаточной жаростойкостью.

Химический состав в % материала   20Х12ВНМФ

ГОСТ   5632 - 72  
 

C

Si

Mn

Ni

S

P

Cr

Mo

W

V

0.17 - 0.23

до   0.6

0.5 - 0.9

0.5 - 0.9

до   0.025

до   0.03

10.5 - 12.5

0.5 - 0.7

0.7 - 1.1

0.15 - 0.3


 
          Высоколегированные аустенитные стали и сплавы обладают комплексом положительных свойств. Поэтому одну и ту же марку стали иногда можно использовать для изготовления изделий различного назначения. В связи с этим и требования к свойствам сварных соединений будут различными. Это определяет и различную технологию сварки (сварочные материалы, режимы сварки, необходимость последующей термообработки и т.д.), направленную на получение сварного соединения с  необходимыми свойствами, определяемыми составом металла шва и его структурой. 
 Характерные для высоколегированных сталей теплофизические свойства (низкий коэффициент теплопроводности, повышенный коэффициент теплового расширения, высокий коэффициент удельного электросопротивления) заставляют создавать особые условия и применять специальные технологические приемы при их  сварке. Пониженный коэффициент теплопроводности, при равных остальных условиях, значительно изменяет распределение температур в шве и околошовной зоне, что увеличивает глубину проплавления основного металла, а с учетом повышенного коэффициента теплового расширения – возрастает и коробление изделий.

 

Особенности сварки стали 20Х12ВНМФ.

 
  Главной и общей особенностью сварки высоколегированных аустенитных сталей и сплавов является склонность к образованию в шве и околошовной зоне горячих трещин, имеющих межкристаллитный характер. Они могут наблюдаться как в виде мельчайших микронадрывов, так и видимых трещин. Горячие трещины могут возникнуть и при термической обработке или работе конструкции при повышенных температурах. Образование горячих трещин связано с формированием при сварке крупнозернистой макроструктуры, особенно выраженной в многослойных швах, когда кристаллы последующего слоя продолжают кристаллы предыдущего слоя, и наличием напряжений усадки. 
 Предупреждение образования этих дефектов достигается использованием нижеуказанных технологических приемов: 
      1) Ограничением (особенно при сварке аустенитных сталей) в основном и наплавленном металлах содержания вредных (серы, фосфора) и ликвирующих (свинца, олова, висму-та) примесей, а также газов — кислорода и водорода. Для этого следует применять режимы, уменьшающие долю основного металла в шве, и использовать сварочные материалы с минимальным содержанием названных примесей (стали двойного переплава: вакуумного и электрошлакового). Техника сварки должна обеспечивать минимальное насыщение металла шва газами. Необходимо также принимать меры к удалению влаги из флюса и покрытия электродов, обеспечивая их необходимую прокалку. Это уменьшит также вероятность образования пор, вызываемых водородом; 
 Получением такого химического состава металла шва, который обеспечил бы в нем двухфазную структуру. Для жаропрочных и жаростойких сталей с малым запасом аустенитности и содержанием никеля до 15 % это достигается получением аустенитно-ферритной структуры с 3-5 % феррита. Большее количество феррита может привести к значительному высокотемпературному охрупчиванию швов ввиду их сигматизации.      Стремление получить аустенитно-ферритную структуру швов на глубокоаустенитных сталях, содержащих более 15 % Ni, потребует повышенного их легирования феррито-образующими элементами, что приведет к снижению пластических свойств шва и охрупчиванию ввиду появления хрупких эвтектик, а иногда и α-фазы. 
 Поэтому в швах стремятся получить аустенитную структуру с мелкодисперсными карбидами и интерметаллидами. Благоприятно и легирование швов повышенным количеством молибдена, марганца и вольфрама, подавляющих процесс образования горячих трещин. Количество феррита в структуре швов на коррозионно-стойких сталях может быть повышено до 15 … 25 %. Высоколегированные стали содержат в качестве легирующих присадок алюминий, кремний, титан, ниобий, хром и другие элементы, обладающие большим сродством к кислороду, чем железо. Поэтому при наличии в зоне сварки окислительной атмосферы возможен их значительный угар, что может привести к уменьшению содержания или к полному исчезновению в структуре шва ферритной и карбидной фаз, особенно в металле с небольшим избытком ферритообразователей. 
 Для сварки рекомендуется использовать неокислительные низкокремнистые, высоко-основные флюсы (фторидные) и покрытия электродов (фтористокальциевые). Сварка короткой дугой и предупреждение подсоса воздуха служит этой же цели. Азот — сильный аустенитообразователь, способствует измельчению структуры за счет увеличения центров кристаллизации в виде тугоплавких нитридов. Поэтому азотизация металла шва способствует повышению их стойкости против горячих трещин. 
 Высокоосновные флюсы и шлаки, рафинируя металл шва и иногда модифицируя его структуру, повышают стойкость против горячих трещин. Механизированные способы сварки, обеспечивая равномерное проплавление основного металла по длине шва и постоянство термического цикла сварки, позволяют получить и более стабильные структуры на всей длине сварного соединения;

3) Применением технологических приемов, направленных на изменение формы сварочной ванны и направления роста кристаллов аустенита. Действие растягивающих сил, перпендикулярное направлению роста столбчатых кристаллов, увеличивает вероятность образования горячих трещин. При механизированных способах сварки тонкими электродными проволоками поперечные колебания электрода, изменяя схему кристаллизации металла шва, позволяют уменьшить его склонность к горячим трещинам;

4) Уменьшением силового фактора, возникающего в результате термического цикла сварки, усадочных деформаций и жесткости закрепления свариваемых кромок. Снижение его действия достигается ограничением силы сварочного тока, заполнением разделки швами небольшого сечения и применением соответствующих конфигураций разделок. Этому же способствует хорошая заделка кратера при обрыве дуги.

  Еще одной серьезной проблемой при сварке высоколегированных аустенитных сталей различными способами является предупреждение межкристаллитной и «ножевой» коррозии шва и околошовного основного металла.  
 В связи с этим сварку необходимо выполнять при наименьшей погонной энергии, используя  механизированные способы сварки, обеспечивающие непрерывность получения шва,  не следует допускать повышения в металле шва содержания углерода за счет загрязнения его не совсем «чистыми» сварочными материалами, длительного и многократного пребывания металла сварного соединения в интервале критических температур. 
 Повторные возбуждения дуги при ручной сварке, вызывая нежелательное тепловое действие на металл, могут вызвать появление склонности его к коррозии. Шов, обращенный к агрессивной среде, по возможности следует сваривать в последнюю очередь, чтобы предупредить его повторный нагрев, последующие швы в многослойных швах — после полного охлаждения предыдущих. Следует принимать меры к ускоренному охлаждению швов. Брызги, попадающие на поверхность основного металла, могут быть впоследствии очагами коррозии.  
 Для повышения стойкости швов к межкристаллитной коррозии и создания в их металле аустенитно-ферритной структуры при сварке их обычно легируют титаном или ниобием. Однако титан обладает высоким сродством к кислороду и поэтому при способах сварки, создающих в зоне сварки окислительную атмосферу (ручная дуговая сварка, сварка под окислительными флюсами), он выгорает в количестве 70-90 %. Легирование швов титаном возможно при сварке в инертных защитных газах, при дуговой и электрошлаковой сварке с использованием фторидных флюсов. Ниобий при сварке окисляется значительно меньше и его чаще используют для легирования шва при ручной дуговой сварке. Однако он может вызвать появление в швах горячих трещин. 
 При сварке жаропрочных и жаростойких сталей обеспечение требуемых свойств во многих случаях достигается термообработкой (аустенизацией), описанной выше. При невозможности термообработки, сварку иногда выполняют с предварительным или сопутствующим подогревом до температуры 350-400°С. Чрезмерное охрупчивание швов за счет образования карбидов предупреждается снижением содержания в шве углерода. Обеспечение необходимой окалиностойкости достигается получением металла шва, по составу идентичного основному металлу. Это же требуется и для получения швов стойких к общей жидкостной коррозии. Следует тщательно удалять с поверхности швов остатки шлака и флюса, так как взаимодействие их в процессе эксплуатации с металлом может повести к коррозии или снижению местной жаростойкости.

 

Ручная дуговая сварка.

 

Основной особенностью сварки аустенитных сталей является обеспечение требуемого химического состава металла шва при различных типах сварных соединений и пространственных положениях сварки с учетом изменения глубины проплавления основного металла и количества наплавленного металла. Это заставляет корректировать состав покрытия с целью обеспечения необходимого содержания в шве феррита и предупреждения, таким образом, образования в шве горячих трещин, а также достижения необходимой жаропрочности и коррозионной стойкости швов. Получению металла шва с необходимыми химическим составом и структурами и уменьшению угара легирующих элементов способствует применение электродов с фтористокальциевым (основным) покрытием и поддержание короткой дуги без поперечных колебаний электрода. Последнее уменьшает и вероятность образования дефектов на поверхности основного металла в результате прилипания брызг.

Тип покрытия электрода определяет необходимость использования постоянного тока обратной полярности, величину которого назначают так, чтобы отношение его к диаметру электрода не превышало 25—30 А/мм. В потолочном и вертикальном положениях сварочный ток уменьшают на 10—30% по сравнению с током, выбранным для нижнего положения сварки.

Сварку покрытыми электродами рекомендуется выполнять ниточными швами и для повышения стойкости против горячих трещин применять электроды диаметром 3 мм. Во всех случаях следует обеспечивать, минимальное проплавление основного металла. Электроды перед сваркой должны быть прокалены при 250— 400 0С в течение 1—1,5 ч для уменьшения вероятности образования в швах пор, вызываемых водородом, и трещин.

Тип электродов для сварки высоколегированных сталей с особыми свойствами определяется ГОСТ 10052—75. Размеры и общие технические требования регламентированы ГОСТ 9466—75.

 

Сварка под флюсом.

 

Сварка под флюсом является одним из основных процессов сварки высоколегированных сталей толщиной 3—50 мм при производстве химической и нефтехимической аппаратуры. Основным преимуществом этого способа перед ручной дуговой сваркой покрытыми электродами является стабильность состава и свойств металла по всей длине шва при сварке как с разделкой, так и без разделки кромок. Это обеспечивается возможностью получения шва любой длины без кратеров, образующихся при смене электродов, равномерностью плавления электродной проволоки и основного металла по длине шва и более надежной защитой зоны сварки от окисления легирующих компонентов кислородом воздуха. Хорошее формирование поверхности швов с мелкой чешуйчатостью и плавным переходом к основному металлу, отсутствие брызг на поверхности изделия заметно повышают коррозионную стойкость сварных соединений. Уменьшается трудоемкость подготовительных работ, так как разделку кромок производят на металле толщиной свыше 12 мм (при ручной сварке — на металле толщиной 3—5 мм). Возможна сварка с повышенным зазором и без разделки кромок стали толщиной до 30—40 мм. Уменьшение потерь на угар, разбрызгивание и огарки электродов на 10—20% снижает расход дорогостоящей сварочной проволоки.

Техника и режимы сварки высоколегированных сталей и сплавов имеют ряд особенностей по сравнению со сваркой обычных низколегированных сталей. Для предупреждения перегрева металла и связанного с этим укрупнения структуры, возможности появления трещин и снижения эксплуатационных свойств сварного соединения рекомендуется выполнять сварку швами небольшого сечения. Это обусловливает применение сварочных проволок диаметром 2—3 мм, а с учетом высокого электросопротивления аустенитных сталей — необходимость уменьшения вылета электрода в 1,5—2 раза. Аустенитные сварочные проволоки в процессе изготовления сильно наклёпываются и имеют высокую жесткость, что затрудняет работу правильных, подающих и токоподводящих узлов сварочных установок, снижая срок их службы.

Шов легируют через флюс или проволоку. Последний способ более предпочтителен, так как обеспечивает повышенную стабильность состава металла шва. Для сварки под флюсом аустенитных сталей и сплавов используют сварочные проволоки, выпускаемые по ГОСТ 2246—70 и по ведомственным техническим условиям, и низкокремнистые фторидные и высокоосновные бесфтористые флюсы, создающие в зоне сварки безокислительные или малоокислительные среды, способствующие минимальному угару легирующих элементов. У флюсов, применяемых для коррозионно-стойких сталей, необходимо контролировать углерод, содержание которого не должно быть выше 0,1—0,2%. Наибольшее применение для сварки коррозионных сталей получили низкокремнистые флюсы АН-26, 48-ОФ-Ю и АНФ-14.

Сварку жаростойких сталей аустенитно-ферритными проволоками типа 08Х25Н13БТЮ выполняют под низкокремнистыми флюсами АН-26, АНФ-14 и 48-ОФ-10. При сварке стабильноаустенитными проволоками и проволоками, содержащими легкоокисляющиеся элементы (алюминий, титан, бор и др.), применяют нейтральные фторидные флюсы АНФ-5, 48-ОФ-Ю. Для обеспечения стойкости против горячих трещин аустенитных швов рекомендуют применять фторидный бористый флюс АНФ-22.

Сварку под фторидными флюсами производят на постоянном токе обратной полярности, а под высокоосновными бесфтористымн флюсами — на постоянном токе прямой полярности. При этом для получения той же глубины проплавления, что и на углеродистых сталях, сварочный ток следует снизить на 10—30%. Для снижения вероятности образования пор в швах флюсы для высоколегированных сталей необходимо прокаливать непосредственно перед сваркой при 500—900 0С в течение 1—2 ч. Остатки шлака и флюса на поверхности швов необходимо тщательно удалять.

Сварка под флюсом в сочетании с высоколегированными проволоками обеспечивает получение требуемых свойств сварных соединений.

 

Информация о работе Сварка аустенитных сталей