Анализ и оценка кредитоспособности организации заемщика

Автор работы: Пользователь скрыл имя, 13 Февраля 2010 в 09:43, Не определен

Описание работы

Введение
Глава 1. Методика анализа и оценки кредитоспособности организации заемщика
1.1.Понятие кредитоспособности, цели и задачи анализа
1.2.Зарубежная и отечественная практика оценки кредитоспособности организации заемщика
Глава 2. Система показателей для анализа организации заемщика и
определения класса его кредитоспособности
2.1. Порядок определения кредитоспособности предприятия
2.2. Скоринговая модель кредитования6
Заключение
Список литературы

Файлы: 1 файл

Курсовая по ФМ.doc

— 234.00 Кб (Скачать файл)

       - определение эффективности использования  заемщиком кредитных ресурсов;

       - осуществление текущей оценки  финансового состояния заемщика  и прогнозирование его изменения  после предоставления кредитных  ресурсов;

       - проведение текущего контроля (мониторинга)  со стороны кредитора за соблюдением  заемщиком требований в отношении показателей его финансового состояния;

       - анализ целесообразности и результативности  принимаемых решений по достижению  и поддержанию на приемлемом  уровне кредитоспособности организации-заемщика;

       - выявление факторов кредитного  риска и оценка их влияния  на принятие решений о выдаче кредита заемщику;

       - анализ достаточности и надежности  предоставленного заемщиком обеспечения.

       Анализ  кредитоспособности, состоит из подходов. Мировая и отечественная практика позволила выделить два основных подхода:  способность заемщика заработать средства в ходе текущей деятельности для погашения долга (финансовые возможности) и его капитал.

1.2. Зарубежная и отечественная  практика оценки  кредитоспособности  организации заемщика

       Кредитоспособность  заемщика зависит от многих факторов, оценить и рассчитать каждый из которых непросто. Большая часть анализируемых на практике показателей кредитоспособности основана на данных за прошедший период или на какую-то отчетную дату, вместе с тем все они подвержены искажающему влиянию инфляции.

       Сложность представляют выявление и количественная оценка некоторых факторов, таких, как  моральный облик и репутация  заемщика. Кроме того, применяется  множество методов и подходов решения данной задачи, не исключающих  друг друга, а дополняющих в комплексе и делающих оценку кредитоспособности заемщика более соответствующей реальности.

       Одним из основных критериев кредитоспособности клиента является его способность  зарабатывать средства для погашения  долга в ходе текущей деятельности. Известна и другая позиция, изложенная в экономической литературе, когда кредитоспособность связывается со степенью вложения капитала в недвижимость. Последнее и является формой защиты от риска обесценения средств в условиях инфляции,  но  это не может,  является основным признаком кредитоспособности заемщика. Дело в том, что для высвобождения денежных средств из недвижимости требуется время. Вложение средств в недвижимость связанно с риском обесценения активов. Поэтому целесообразно ориентироваться на ликвидность баланса, эффективность (прибыльность) деятельности заемщика, его денежные потоки.

       Капитал клиента является не менее важным критерием кредитоспособности клиента. При этом важны два следующих  аспекта его оценки: его достаточность, которая анализируется на основе сложившихся требований к минимальному уровню уставного фонда (акционерному капиталу) и степень вложения собственного капитала в кредитуемую операцию, что свидетельствует о распределении риска между банком и заемщиком. Чем больше вложения собственного капитала, тем больше и заинтересованность заемщика в тщательном отслеживании факторов кредитного риска.

       Под обеспечением понимается стоимость  активов заемщика и конкретный вторичный  источник погашения долга (залог, гарантия, поручительство, страхование), предусмотренный  в кредитном договоре. Если соотношение стоимости активов и долговых обязательств имеет значение для погашения ссуды в случае объявления заемщика банкротом, то качество конкретного вторичного источника гарантирует выполнение им своих обязательств в срок.

       Удачной представляется данная классификация подходов к оценке кредитоспособности заемщиков коммерческих банков (Рис.1) [7, с. 51].

       Классификационные модели дают возможность группировать заемщиков:

          - рейтинговые в зависимости от их категории, устанавливаемой с помощью группы рассчитываемых финансовых коэффициентов и присваиваемых им уровней значимости.

       - прогнозные модели позволяют  дифференцировать их в зависимости  от вероятности банкротства.

         
 
 

       

       Рис. 1. Классификация  моделей оценки кредитоспособности заемщиков

       Рейтинговая оценка (общая сумма баллов) рассчитывается путем умножения значения показателя на его вес (коэффициент значимости) в интегральном показателе. В мировой  практике при оценке кредитоспособности на основе системы финансовых коэффициентов применяются в основном следующие пять групп коэффициентов: ликвидности, оборачиваемости, финансового рычага, прибыльности, обслуживания долга.

       Группа  ученых - Дж. Шим,  Дж. Сигел,  Б. Нидлз, Г. Андерсон, Д. Колдвел предложила использовать группы показателей, характеризующих ликвидность, прибыльность, долгосрочную платежеспособность и показатели, основанные на рыночных критериях.

       Этот  подход позволяет прогнозировать долгосрочную платежеспособность с учетом степени  защищенности кредиторов от неуплаты процентов (коэффициента покрытия процента). Коэффициенты, основанные на рыночных критериях, включают отношение цены акции к доходам, размер дивидендов и рыночный риск. С их помощью определяются отношение текущего биржевого курса акций к доходам в расчете на одну акцию, текущая прибыль их владельцев, изменчивость курса акций фирмы относительно курсов акций других фирм.

       Однако  расчет некоторых коэффициентов  сложен и требует применения специальных  статистических методов. На практике каждый коммерческий банк выбирает для себя определенные коэффициенты и решает вопросы, связанные с методикой их расчета. Этот подход позволяет охарактеризовать финансовое состояние заемщика на основе синтезированного показателя-рейтинга, рассчитываемого в баллах, присваиваемых каждому значению коэффициента. В соответствии с баллами устанавливается класс организации: первоклассная, второклассная, третьеклассная или неплатежеспособная.

       Класс организации принимается банком во внимание при разработке шкалы  процентных ставок, определении условий кредитования, установлении режима кредитования (форма кредита, размер и вид кредитной линии и т.д.), оценке качества кредитного портфеля, анализе финансовой устойчивости банка.

       Модификацией  рейтинговой оценки является кредитный  скоринг -технический прием, предложенный в начале 40-х годов XX в. американским ученым Д. Дюраном для отбора заемщиков по потребительскому кредиту.

       Отличие кредитного скоринга заключается в  том, что в формуле рейтинговой  оценки вместо значения показателя используется его частная балльная оценка. Для каждого показателя определяется несколько интервалов значений, каждому интервалу приписывается определенное количество баллов или определяется класс. Если полученный заемщиком рейтинг ниже значения, заранее установленного сотрудниками банка, то такому заемщику будет отказано в кредите, а если соответствует нормативам, то кредитная заявка будет удовлетворена.

       Преимуществами  рейтинговой модели являются простота, возможность расчета оптимальных  значений по частным показателям, способность ранжирования организаций по результатам, комплексный подход к оценке кредитоспособности. Однако при использовании данной методики следует учитывать ряд проблем:

       -  необходимость тщательного отбора  финансовых показателей (требуется  использовать показатели, описывающие разные стороны работы заемщика, с тем, чтобы более полно охарактеризовать его положение);

       - важность обоснования пороговых  значений показателей (в нашей  стране довольно сложно осуществить  подобный подход, так как недостаточно  сведений о фактическом состоянии и уровнях данных показателей в экономике России, а также мала степень участия банков в формировании такой базы данных);

       - необходимость обоснования коэффициентов  значимости для каждой группы  показателей в соответствии с  отраслью деятельности конкретного заемщика;

       -  определение величины отклонений  в пограничных областях, относящих  заемщиков к разным классам;

       - при рейтинговой оценке учитываются  уровни показателей только относительно  оптимальных значений, соответствующих  определенным установленным нормативам, но не принимается во внимание степень их выполнения или невыполнения;

       -  рассчитываемые коэффициенты показывают  лишь отдельные стороны деятельности;

       - в системе рассчитываемых коэффициентов  не учитываются многие факторы  - репутация заемщика, перспективы и особенности рыночной конъюнктуры, оценки выпускаемой и реализуемой продукции, перспективы капиталовложений и т.д.

       Прогнозные  модели, получаемые с помощью статистических методов, используются для оценки качества потенциальных заемщиков.

       При множественном дискриминантом анализе (МДА) используется дискриминантная  функция (Z), учитывающая некоторые параметры (коэффициенты регрессии) и факторы, характеризующие (финансовое состояние заемщика (в том числе финансовые коэффициенты). Коэффициенты регрессии рассчитываются в результате статистической обработки данных по выборке фирм, которые либо обанкротились, либо выжили в течение определенного времени.

       Если  Z-оценка фирмы находится ближе к показателю средней фирмы-банкрота, то при условии продолжающегося ухудшения ее положения она обанкротится. Если менеджеры фирмы и банк предпримут усилия для устранения финансовых трудностей, то банкротство, возможно, не произойдет.

       Таким образом, Z-оценка является сигналом для предупреждения банкротства фирмы. Применение данной модели требует обширной репрезентативной выборки фирм по разным отраслям и масштабам деятельности. Сложность заключается в том, что не всегда можно найти достаточное число обанкротившихся фирм внутри отрасли для расчета коэффициента регрессии.

       Наиболее  известными моделями МДА являются модели Альтмана и Чессера, включающие следующие  показатели: отношение собственных  оборотных средств к сумме  активов; отношение реинвестируемой  прибыли к сумме активов; отношение  рыночной стоимости акций к заемному капиталу; отношение объема продаж (выручки от реализации) к сумме активов; отношение брутто-прибыли (прибыли до вычета процентов и налогов) к сумме активов.

       Организацию относят к определенному классу надежности на основе значений Z-индекса модели Альтмана. Пятифакторная модель Альтмана построена на основе анализа состояния 66-ти фирм и позволяет дать достаточно точный прогноз банкротства на два-три года вперед.

       Построение  в российских условиях подобных моделей  достаточно сложно из-за отсутствия статистических данных о банкротстве организаций, постоянного изменения нормативной базы в области банкротства и признания банкротства организации на основе данных, не поддающихся учету.

       Модель  Чессера позволяет прогнозировать невыполнение клиентом условий договора о кредите. Невыполнение подразумевает не только непогашение кредита, но и любые другие отклонения, делающие отношения между кредитором и заемщиком менее выгодными по сравнению с первоначальными условиями. Используемая линейная комбинация независимых переменных (Z) включает: отношение кассовой наличности и стоимости легко реализуемых ценных бумаг к сумме активов; отношение чистой суммы продаж (без учета НДС) к сумме кассовой наличности и стоимости легко реализуемых ценных бумаг; отношение брутто-дохода (прибыли до вычета процентов и налогов) к сумме активов; отношение совокупной задолженности к сумме активов; отношение основного капитала к величине чистых активов (или применяемого капитала, равного акционерному капиталу и долгосрочным кредитам); отношение оборотного капитала к нетто-продажам (чистой сумме продаж). Получаемый показатель может рассматриваться как оценка вероятности невыполнения условий кредитного договора.

       Чессер  использовал данные ряда банков по 37-ми «удовлетворительным» и 37-ми «неудовлетворительным» кредитам  и для расчета взял показатели балансов фирм-заемщиков за год до получения кредита. Подставив расчетные показатели модели в формулу вероятности нарушения условий договора, Чессер правильно определил три из каждых четырех исследуемых случаев.

Информация о работе Анализ и оценка кредитоспособности организации заемщика