Автор работы: Пользователь скрыл имя, 02 Февраля 2010 в 10:49, Не определен
Контрольная работа
Что касается организации целостной системы преобразований (синтез), то основная её цель состоит в формировании гибкого и мощного аппарата, пригодного для использования в решении разнообразных учебных заданий.
В
курсе алгебры и начал анализа
целостная система
§3. Особенности организации системы заданий
при
изучении тождественных
преобразований
Основной
принцип организации любой
Цикл
упражнений связан с изучением одного
тождества, вокруг которого группируются
другие тождества, находящиеся с
ним в естественной связи. В состав
цикла наряду с исполнительными
входят задания, требующие распознавания
применимости рассматриваемого тождества.
Изучаемое тождество
Задания
в каждом цикле разбиты на две
группы. К первой относятся задания,
выполняемые при первоначальном
знакомстве с тождеством. Они служат
учебным материалом для нескольких
идущих подряд уроков, объединенных одной
темой. Вторая группа упражнений связывает
изучаемое тождество с
Описанная структура цикла относится к этапу формирования навыков применения конкретных видов преобразований. На заключительном этапе – этапе синтеза циклы видоизменяются. Во-первых, объединяются обе группы заданий, образующие «развернутый» цикл, причем из первой группы исключаются наиболее простые по формулировкам или по сложности выполнения задания. Оставшиеся типы заданий усложняются. Во-вторых, происходит слияние циклов, относящихся к различным тождествам, в силу чего повышается роль действий по распознаванию применимости того или иного тождества.
Отметим особенности циклов заданий, связанных с тождествами для элементарных функций. Эти особенности обусловлены тем, что, во-первых, соответствующие тождества изучаются в связи с изучением функционального материала и, во-вторых, они появляются позже тождеств первой группы и изучаются с использованием уже сформированных навыков проведения тождественных преобразований.
Каждая вновь вводимая элементарная функция резко расширяет область чисел, которые могут быть обозначены и названы индивидуально. Поэтому в первую группу заданий циклов должны войти задания на установление связи этих новых числовых областей с исходной областью рациональных чисел. Приведем примеры таких заданий.
Пример
1. Вычислить:
Рядом с каждым выражением указано тождество, в циклах по которым могут присутствовать предлагаемые задания. Цель таких заданий – в освоении особенностей записей, включающих символы новых операций и функций, и в развитии навыков математической речи.
Значительная
часть использования
Последовательность шагов при этом способе решения такова:
1) найти функцию , для которой данное уравнение представимо в виде ;
2) произвести подстановку и решить уравнение ;
3) решить каждое из уравнений , где – множество корней уравнения .
При использовании описанного способа зачастую 2 шаг выполняется в неявном виде, без введения обозначения для . Кроме того, ученики зачастую предпочитают из различных путей, ведущих к нахождению ответа, выбирать тот, который быстрее и проще приводит к алгебраическому уравнению.
Пример 2. Решить уравнение .
Первый способ:
⇔
⇔
Второй способ:
Здесь видно, что при первом способе 1 шаг сложнее, чем при втором. Первым способом «труднее начать», хотя дальнейший ход решения значительно проще. С другой стороны, у второго способа имеются достоинства, состоящие в большей легкости, большей отработанности в обучении сведения к алгебраическому уравнению.
Для
школьного курса алгебры
Основная нагрузка таких заданий относится к выделению 1 шага как самостоятельной части процесса решения, связанного с использованием свойств изучаемой элементарной функции.
Пример 3. Решить уравнение:
1)
Преобразуем выражение 1), для этого заменим на t, отсюда получим
, решаем квадратное уравнение, получаем t=2 или t=1, делаем обратную замену: или .
Аналогично преобразовываем выражение 2), получаем: или .
Для решения этих уравнений требуется знание лишь простейших фактов о показательной функции: ее монотонность, область значений. Как и задание предыдущего примера, уравнения 1) и 2) можно отнести к первой группе цикла упражнений на решение квадратно-показательных уравнений.
Значительная
часть тождеств, изучаемых в курсах
алгебры и начал анализа, доказывается
в них или, по крайней мере, поясняется.
Эта сторона изучения тождеств имеет
большое значение для обоих курсов,
поскольку доказательные
В качестве опоры, на которой строятся доказательства тождеств, используются свойства арифметических операций.
Воспитательное
воздействие вычислений и тождественных
преобразований может быть, направлено
на развитие логического мышления,
если только от учащихся будут систематически
требоваться обоснования
Запросы бытовой, производственной вычислительной практики требуют формирования у учащихся прочных, автоматизированных навыков рациональных вычислений и тождественных преобразований. Эти навыки вырабатываются в процессе любой вычислительной работы, тем не менее, необходимы специальные тренировочные упражнения в быстрых вычислениях и преобразованиях.
Так, если на уроке предполагается решение логарифмических уравнений с использованием основного логарифмического тождества , >0, то полезно в план урока включить устные упражнения на упрощение или вычисление значений выражений: , , . Цель упражнений всегда сообщается учащимся. В ходе выполнения упражнения может возникнуть необходимость потребовать от учащихся обоснований отдельных преобразований, действий или решения всей задачи, даже если это не планировалось. Там, где возможны различные способы решения задачи, желательно всегда ставить вопросы: «Каким способом решалась задача?», «Кто решил задачу другим способом?»
Понятия тождества и тождественного преобразования вводятся в курсе алгебры VI класса. Само определение тождественных выражений не может быть практически использовано для доказательства тождественности двух выражений. И понять, что сущность тождественных преобразований состоит в применении к выражению определений и свойств тех действий, которые указаны в выражении, или в прибавлении к нему выражения, тождественно равного 0, или в умножении его на выражение, тождественно равное единице. Но, даже усвоив эти положения, учащиеся часто не понимают, почему указанные преобразования позволяют утверждать, что исходное и полученное выражение тождественны, т.е. принимают одинаковые значения при любых системах (наборах) значений переменных.
Важно
так же добиться, что бы учащиеся
хорошо понимали, что такие выводы
тождественных преобразований, являются
следствиями определений и
Аппарат тождественных преобразований, накопленный в предшествующие годы, в VI классе расширяется. Это расширение начинается введением тождества, выражающего свойство произведения степеней с одинаковыми основаниями: , где , – целые числа.
Обобщение понятия степени.
Определение: Пусть , корнем -ой степени из чиста называется такое число, -я степень которого равна .
Согласно данному определению корень -ой степени из числа – это решение уравнения . Число корней этого уравнения зависит от и . Рассмотрим функцию . Как известно, на промежутке эта функция при любом возрастает и принимает все значения из промежутка . По теореме о корне уравнение для любого имеет неотрицательный корень и при том только один. Его называют арифметическим корнем -ой степени из числа и обозначают ; число называют показателем корня, а само число – подкоренным выражением. Знак называют так же радикалом.
Определение: Арифметическим корнем -ой степени из числа называют неотрицательное число, -я степень которого равна .
При четных функция четна. Отсюда следует, что если , то уравнение , кроме корня , имеет также корень . Если , то корень один: ; если , то это уравнение корней не имеет, поскольку четная степень любого числа неотрицательна.
При нечетных значениях функция возрастает на всей числовой прямой; её область значений – множество всех действительных чисел. Применяя теорему о корне, находим, что уравнение имеет один корень при любом и, в частности, при . Этот корень для любого значения обозначают .
Информация о работе Тождественные преобразования показательной и логарифмической функций