Теория вероятности

Автор работы: Пользователь скрыл имя, 11 Мая 2010 в 18:00, Не определен

Описание работы

решение практических задач по теории вероятностей
Вероятность (вероятностная мера) — мера достоверности случайного события. Оценкой вероятности события может служить частота его наступления в длительной серии независимых повторений случайного эксперимента. Согласно определению П. Лапласа мерой вероятности называется дробь, числитель которой есть число всех благоприятных случаев, а знаменатель - число всех возможных случаев.

Файлы: 1 файл

теория Вероятность.doc

— 425.00 Кб (Скачать файл)

Свойства многомерных  функций распределения аналогичны одномерному случаю. Также сохраняется взаимно-однозначное соответствие между распределениями на и многомерными функциями распределения. Однако, формулы для вычисления вероятностей существенно усложняются, и потому функции распределения редко используются для n > 1.

Пусть — случайная величина, определённая на некотором вероятностном пространстве. Тогда

где символ M обозначает математическое ожидание.

[править] Замечания

  • В силу линейности математического ожидания справедлива  формула:

  • Дисперсия является вторым центральным моментом случайной величины;
  • Дисперсия может быть бесконечной. См., например, распределение Коши.
  • Дисперсия может быть вычислена с помощью производящей функции моментов U(t):

    D[X] = U''(0) − U'2(0)

  • Дисперсия целочисленной случайной величины может быть вычислена с помощью производящей функции последовательности.

[править] Свойства

  • Дисперсия любой случайной величины неотрицательна:
  • Если дисперсия случайной величины конечна, то конечно и её математическое ожидание;
  • Если случайная величина равна константе, то её дисперсия равна нулю: D[a] = 0. Верно и обратное: если D[X] = 0, то X = M[X] почти всюду;
  • Дисперсия суммы двух случайных величин равна:

    , где  – их ковариация;

  • Для дисперсии произвольной линейной комбинации нескольких случайных величин имеет место равенство:

    , где  ;

  • В частности, D[X1 + ... + Xn] = D[X1] + ... + D[Xn] для любых независимых или некоррелированных случайных величин, так как их ковариации равны нулю;

[править] Пример

Пусть случайная  величина имеет стандартное непрерывное равномерное распределение на т. е. её плотность вероятности задана равенством

Тогда

и

Тогда

Пусть — случайная величина, определённая на некотором вероятностном пространстве. Тогда

где символ M обозначает математическое ожидание.

[править] Замечания

  • В силу линейности математического ожидания справедлива  формула:

  • Дисперсия является вторым центральным моментом случайной величины;
  • Дисперсия может быть бесконечной. См., например, распределение Коши.
  • Дисперсия может быть вычислена с помощью производящей функции моментов U(t):

    D[X] = U''(0) − U'2(0)

  • Дисперсия целочисленной случайной величины может быть вычислена с помощью производящей функции последовательности.

[править] Свойства

  • Дисперсия любой случайной величины неотрицательна:
  • Если дисперсия случайной величины конечна, то конечно и её математическое ожидание;
  • Если случайная величина равна константе, то её дисперсия равна нулю: D[a] = 0. Верно и обратное: если D[X] = 0, то X = M[X] почти всюду;
  • Дисперсия суммы двух случайных величин равна:

    , где  – их ковариация;

  • Для дисперсии произвольной линейной комбинации нескольких случайных величин имеет место равенство:

    , где  ;

  • В частности, D[X1 + ... + Xn] = D[X1] + ... + D[Xn] для любых независимых или некоррелированных случайных величин, так как их ковариации равны нулю;

[править] Пример

Пусть случайная  величина имеет стандартное непрерывное равномерное распределение на т. е. её плотность вероятности задана равенством

Тогда

и

Тогда

Пусть — фиксированное вероятностное пространство. Пусть суть два случайных события, причём . Тогда условной вероятностью события A при условии события B называется

    .

[править] Замечания

  • Прямо из определения очевидно следует, что

    .

  • Если , то изложенное определение условной вероятности неприменимо.
  • Условная вероятность является вероятностью, то есть функция , заданная формулой

    ,

удовлетворяет всем аксиомам вероятностной меры.

[править] Пример

Если A,несовместимые события, то есть и , то

и

    .

Пусть есть бесконечная  последовательность одинаково распределённых и некоррелированных случайных величин , определённых на одном вероятностном пространстве . То есть их ковариация . Пусть . Обозначим Sn выборочное среднее первых n членов:

    .

Тогда .

[править] Усиленный закон больших чисел

Пусть есть бесконечная  последовательность независимых одинаково распределённых случайных величин , определённых на одном вероятностном пространстве . Пусть . Обозначим Sn выборочное среднее первых n членов:

    .

Тогда почти наверное.

Классическая формулировка Ц.П.Т.

Пусть есть бесконечная последовательность независимых одинаково распределённых случайных величин, имеющих конечное математическое ожидание и дисперсию. Обозначим последние μ и σ2, соответственно. Пусть . Тогда

    по распределению при ,

где N(0,1) — нормальное распределение с нулевым математическим ожиданием и стандартным отклонением, равным единице. Обозначив символом выборочное среднее первых n величин, то есть , мы можем переписать результат центральной предельной теоремы в следующем виде:

    по распределению при .

[править] Замечания

  • Неформально говоря, классическая центральная предельная теорема утверждает, что сумма  n независимых одинаково распределённых случайных величин имеет распределение, близкое к N(nμ,nσ2). Эквивалентно, имеет распределение близкое к N(μ,σ2 / n).
  • Так как функция распределения стандартного нормального распределения непрерывна, сходимость к этому распределению эквивалентна поточечной сходимости функций распределения к функции распределения стандартного нормального распределения. Положив , получаем , где Φ(x) — функция распределения стандартного нормального распределения.
  • Центральная предельная теорема в классической формулировке доказывается методом характеристических функций (теорема Леви о непрерывности).
  • Вообще говоря, из сходимости функций распределения не вытекает сходимость плотностей. Тем не менее в данном классическом случае имеет место.

[править] Локальная Ц.П.Т.

В предположениях классической формулировки, допустим в дополнение, что распределение  случайных величин абсолютно непрерывно, то есть оно имеет плотность. Тогда распределение Zn также абсолютно непрерывно, и более того,

    при ,

где - плотность случайной величины Zn, а в правой части стоит плотность стандартного нормального распределения.

[править] Некоторые обобщения

Результат классической центральной предельной теоремы  справедлив для ситуаций гораздо  более общих, чем полная независимость  и одинаковая распределённость.

[править] Ц.П.Т. Линдеберга

Пусть независимые  случайные величины определены на одном и том же вероятностном пространстве и имеют конечные математические ожидания и дисперсии: . Как и прежде построим частичные суммы . Тогда в частности, . Наконец, пусть выполняется условие Линдеберга:

Информация о работе Теория вероятности