Автор работы: Пользователь скрыл имя, 11 Мая 2010 в 18:00, Не определен
решение практических задач по теории вероятностей
Вероятность (вероятностная мера) — мера достоверности случайного события. Оценкой вероятности события может служить частота его наступления в длительной серии независимых повторений случайного эксперимента. Согласно определению П. Лапласа мерой вероятности называется дробь, числитель которой есть число всех благоприятных случаев, а знаменатель - число всех возможных случаев.
Вероятность (вероятностная мера) — мера достоверности случайного события. Оценкой вероятности события может служить частота его наступления в длительной серии независимых повторений случайного эксперимента. Согласно определению П. Лапласа мерой вероятности называется дробь, числитель которой есть число всех благоприятных случаев, а знаменатель - число всех возможных случаев.
Вероятность - мера, заданная на измеримом пространстве (Ω, X):
1.
2.
3. обладает свойством сигма-аддитивности (счетной аддитивности)
Математически классическая (т.е. неквантовая) вероятность задаётся аксиоматикой Колмогорова как мера на вероятностном пространстве, причём мера всего пространства равна единице. При этом случайные события определяются как измеримые подмножества этого пространства
Вероятностное пространство — это тройка , где
Простым и часто используемым примером вероятностного пространства является конечное пространство. Пусть — конечное множество, содержащее элементов.
В качестве сигма-алгебры удобно взять семейство всех подмножеств . Его часто символически обозначают . Легко показать, что общее число членов этого семейства, т.е. число различных случайных событий, как раз равно , что объясняет обозначение.
Вероятность, вообще говоря, можно определять произвольно. Часто, однако, нет причин считать, что один элементарный исход чем-либо предпочтительнее другого. Тогда естественным способом ввести вероятность является:
,
где , и - число элементарных исходов, принадлежащих .
В частности, вероятность любого элементарного события:
Рассмотрим эксперимент с бросанием уравновешенной монеты. Тогда естественным способом задать вероятностное пространство будет взять и определить вероятность следующим образом:
Пусть — вероятностное пространство. Функция , измеримая относительно и борелевской σ-алгебры на , называется случайной величиной.
Вероятностное поведение случайной величины полностью описывается её распределением.
Случайная величина,
вообще говоря, может принимать значения
в любом измеримом
При рассмотрении количества m появлений события A в n испытаниях Бернулли чаще всего нужно найти вероятность того, что m заключено между некоторыми значениями a и b. Так как при достаточно больших n промежуток [a,b] содержит большое число единиц, то непосредственное использование биномиального распределения
требует громоздких вычислений, так как нужно суммировать большое число определённых по этой формуле вероятностей.
Поэтому используют
асимптотическое выражение для
Если в схеме Бернулли n стремится к бесконечности, p (0 < p < 1) постоянно, величина ограничена равномерно по m и n , то
где , c > 0, c - постоянная.
Приближённую формулу
рекомендуется применять при n > 100 и npq > 20.
При рассмотрении количества m появлений события A в n испытаниях Бернулли чаще всего нужно найти вероятность того, что m заключено между некоторыми значениями a и b. Так как при достаточно больших n промежуток [a,b] содержит большое число единиц, то непосредственное использование биномиального распределения
требует громоздких вычислений, так как нужно суммировать большое число определённых по этой формуле вероятностей.
Поэтому используют
асимптотическое выражение для
Если в схеме Бернулли n стремится к бесконечности, p (0 < p < 1) постоянно, величина ограничена равномерно по m и n , то
где , c > 0, c - постоянная.
Приближённую формулу
рекомендуется применять при n > 100 и npq > 20.
Пусть дано вероятностное пространство , и на нём определена случайная величина X с распределением . Тогда функцией распределения случайной величины X называется функция , задаваемая формулой:
- импортное определение;
- определение, принятое в
Из свойств вероятности следует, что , таких что a < b:
Если случайная величина X дискретна, то есть её распределение однозначно задаётся функцией вероятности
,
то функция распределения FX этой случайной величины кусочно-постоянна и может быть записана как:
.
Эта функция непрерывна в любой точке , такой что , и имеет разрыв, равный pi, в x = xi.
Распределение называется непрерывным, если такова его функция распределения FX. В этом случае:
,
и
,
а следовательно формулы имеют вид:
,
где | a,b | означает любой интервал, открытый или закрытый, конечный или бесконечный.
Распределение называется абсолютно непрерывным, если существует неотрицательная почти всюду (относительно меры Лебега) функция fX(x), такая что:
.
Функция fX называется плотностью распределения. Известно, что функция абсолютно непрерывного распределения непрерывна, и, более того, если , то , и
.
Пусть фиксированное вероятностное пространство, и — случайный вектор. Тогда распределение является вероятностной мерой на . Функция этого распределения задаётся по определению следующим образом:
,
где в данном случае обозначает декартово произведение множеств.