Автор работы: Пользователь скрыл имя, 07 Декабря 2010 в 18:24, Не определен
Понятие интеграла, зависящего от параметра
Тогда по теореме о дифференцировании по параметру под знаком интеграла
Видим, что левая и правая части равенства (1) имеют в промежутке совпадающие производные (см. (2) и (3)). А значит они отличаются в этом промежутке только на постоянную величину, т. е. .
Положив в (4) t=c , получим . Значит, будем иметь вместо (4) для любого
Пусть в (5) t=d, получим
Что и
требовалось получить.
Глава 2. Несобственные
интегралы, зависящие от параметра
Пункт
1. Равномерная сходимость
несобственных интегралов,
зависящих от параметра
При рассмотрении теории интегралов, зависящих от параметра, в случае несобственных интегралов особую роль играет понятие равномерной сходимости. Выясним это понятие сначала для несобственных интегралов первого рода (НИЗП-1), затем для интегралов второго рода (НИЗП-2).
Пусть функция определена и непрерывна на некотором прямоугольнике и при любом фиксированном существует несобственный интеграл, зависящий от параметра, этой функции на любом промежутке . Тогда интеграл сходится и равен
В этом случае называют несобственным интегралом первого рода (НИЗП-1).
Утверждение о том, что сходится при каждом означает следующее: при каждом фиксированном
Следовательно,
Это значит, что для каждого по любому можно указать число такое, что если , то . Важно заметить, что зависит и от ,и от : . Если же для любого можно указать число , зависящее только от , такое, что при выполняется для , то в этом случае называется равномерно сходящимся относительно параметра .
Теперь сформулируем критерий Коши для равномерной сходимости для нашего случая следующим образом:
Теорема 1. (критерий Коши равномерной сходимости для НИЗП-1). Для того чтобы интеграл сходился равномерно по переменной на промежутке , необходимо и достаточно, чтобы выполнялась цепочка
, .
Рассмотрим достаточные признаки равномерной сходимости.
Теорема 2. (признак Вейерштрасса равномерной сходимости НИЗП-1). Пусть функция определена и непрерывна на прямоугольнике и удовлетворяет условиям:
Из этого следует, что сходится равномерно по .
Доказательство.
В соответствии с условием 3) критерия Коши о сходимости несобственных интегралов 1-го рода от функции одной переменной имеем:
Тогда при тех же , что и в цепочке, получаем
А отсюда по теореме 1 следует равномерная сходимость интеграла .
Ч. т. д.
Замечание.
При выполнении условий теоремы 2 говорят, что функция имеет интегрируемую мажоранту или что интеграл мажорируется сходящимся интегралом .
Следствие.
Пусть выполняются следующие условия:
сходится равномерно по .
Обозначим через и возьмем в качестве , а в качестве функции . Тогда, исходя из теоремы 2, получим цепочку (1).
Совершенно аналогично вводится понятие равномерной сходимости несобственных интегралов второго рода (НИЗП-2).
Пусть функция определена в области (a,b,c – конечные числа). Пусть при несобственный интеграл сходится. В этом случае будет представлять собой функцию переменной (параметра) , определенную в промежутке . Утверждение, что несобственный интеграл сходится при , означает следующее. При каждом фиксированном интеграл
(здесь ). Это значит, что для каждого из по любому можно указать такое, что при условии выполняется . Важно отметить, что число выбирается по , и для каждого оно будет своим, другими словами, зависит и от , и от : . Если же можно указать такое , зависящее только от , такое, что при выполнении условия будет верно сразу для всех , несобственный интеграл называется равномерно сходящимся относительно параметра. Короче говорят, интеграл называется равномерно сходящимся по переменной на , если он сходится при и выполняется цепочка .
Для НИЗП-2
справедливы теоремы
Теорема 3. (критерий Коши равномерной сходимости НИЗП-2). Для того чтобы НИЗП-2 равномерно сходился по необходимо и достаточно, чтобы:
, .
Теорема 4. Пусть функция определена в области и удовлетворяет следующим условиям:
НИЗП-2 сходится равномерно по на .
Доказательство проводится аналогично доказательству теоремы 2.
Пример. Исследовать на равномерную сходимость интеграл .
Для
определения равномерной
Так как все условия выполнены, то интеграл сходится равномерно относительно на любом промежутке .
Пункт 2. Непрерывность НИЗП, предельный переход под знаком интеграла.
В этом пункте мы рассмотрим предельный переход под знаком интеграла, имеющего бесконечный предел, и непрерывность интеграла как функции параметра. Условия, достаточные для допустимости предельного перехода, даются следующей теоремой:
Теорема 1. Пусть функция , определенная на прямоугольнике , удовлетворяет условиям:
В результате справедливо равенство
Доказательство.
Функция будет непрерывной. По условию равномерной сходимости для любого найдется такое , что , для , но только . Переходя к пределу при под знаком интеграла, получим . Значит интегрируемая на бесконечном промежутке функция. Тогда при , имеем
Если взять произвольное число , зафиксировать число так, чтобы второе и третье слагаемые справа стали меньше , а затем приблизить к , чтобы первое слагаемое стало меньше . Тогда получим , что приводит к равенству (1).
Ч.т.д.
Следствие.
Пусть функция неотрицательна и непрерывна по , при , и монотонно возрастая, стремится к с возрастанием . Если функция непрерывна и интегрируема на промежутке , то справедлива формула (1).
Простым следствием из теоремы 1 является теорема о непрерывности интеграла по параметру.
Теорема 2. Пусть функция определена и непрерывна для значений и значений . Если сходится равномерно относительно на , тогда - непрерывная функция от параметра в этом промежутке.
Доказательство (аналогично теореме для собственных интегралов).
По теореме Кантора при и функция равномерно непрерывна, а значит если - это любое фиксированное из значение, то наша функция равномерно, относительно , стремится к при . Так как сходится равномерно, то по т.1 следует
значит интеграл - непрерывная функция.
Пункт 3. Интегрирование по параметру НИЗП
Чтобы выяснить интегрируема ли функция по параметру, необходимо рассмотреть следующую теорему.
Теорема 1. Пусть функция определена и непрерывна, как функция от двух переменных, в множестве Если интеграл сходится равномерно по на , то справедлива формула
Доказательство.
При любом выполняется равенство
Так как функция непрерывна при и , по теореме о непрерывности интеграла как функции параметра следует, что
Тогда из (2) .
Так как сходится равномерно, то при произвольном будет . В результате этого оценим левую часть (3) по модулю:
в силу (3) . Последнее означает, что
Так как левая часть существует в этом равенстве, то по определению несобственных интегралов правая часть также существует, причем равная . То есть справедлива формула (1).
Ч.т.д.
Следствие.
Если непрерывная функция неотрицательная при и интеграл непрерывен по на , то имеет смысл формула (1).
Таким образом, мы установили право переставлять два интеграла, из которых один распространен на бесконечный промежуток, а другой – на конечный. Очень часто приходится переставлять интегралы, взятые в бесконечных промежутках по формуле .
Чаще всего такую перестановку сложно проделать.
Теоремы 2. Пусть функция неотрицательна и непрерывна при , , интегралы и (*) существуют и являются непрерывными функциями по переменным соответственно. Тогда, если существует один из интегралов, то существует и второй, причем они равны между собой.
Информация о работе Собственные интегралы, зависящие от параметра