Прогнозирование на основе аппарата нейронных сетей

Автор работы: Пользователь скрыл имя, 28 Декабря 2011 в 00:41, курсовая работа

Описание работы

В данной дипломной работе разработан оригинальнй подход к проблеме прогнозирования, на основе нейронных сетей. При помощи нейронной сети основанной на алгоритме обратного функционирования, были спрогнозированы изменения курса доллара США по отношению к украинскому карбованцу. Эксперимент дал хорошие результаты по достоверности. Разработанна модель прогнозирования может быть применена и при прогнозировании других экономических показателей.

Файлы: 1 файл

курсовая.rtf

— 607.47 Кб (Скачать файл)

     Среди разрабатываемых в настоящее время нейроБИС выделяются модели фирмы Adaptive Solutions (США) и Hitachi (Япония) . Нейро- БИС фирмы Adaptive Solutions, вероятно, станет одной из самых быстродействующих: объявленная скорость обработки составляет 1,2 млрд. соединений / с. (НС содержит 64 нейрона и 262144 синапса) . НейроБИС фирмы Hitachi позволяет реализовать НС, содержащую до 576 нейронов. Эти нейроБИС, несомненно, станут основой новых нейрокомпьютеров и специализированных многопроцессорных изделий.

     Большинство сегодняшних нейрокомпьютеров представляют собой просто персональный компьютер или рабочую станцию, в состав которых входит дополнительная нейроплата. К их числу относятся, например, компьютеры серии FMR фирмы Fujitsu. Такие системы имеют бесспорное право на существование, поскольку их возможностей вполне достаточно для разработки новых алгоритмов и решения большого числа прикладных задач методами нейроматематики. Однако наибольший интерес представляют специализированные нейрокомпьютеры, непосредственно реализующие принципы НС. Типичными представителями таких систем являются компьютеры семейства Mark фирмы TRW (первая реализация персептрона, разработанная Розенблатом, называлась Mark I) . Модель Mark III фирмы TRW представляют собой рабочую станцию, содержащую до 15 процессоров семейства Motorola 68000 с математическими сопроцессорами. Все процессоры объединены шиной VME. Архитектура системы, поддерживающая до 65 000 виртуальных процессорных элементов с более чем 1 млн. настраиваемых соединений, позволяет обрабатывать до 450 тыс. межсоединений/с. Mark IV - это однопроцессорный суперкомпьютер с конвейерной архитектурой. Он поддерживает до 236 тыс. виртуальных процессорных элементов, что позволяет обрабатывать до 5 млн. межсоединений/с. Компьютеры семейства Mark имеют общую программную оболочку ANSE (Artificial Neural System Environment) , обеспечивающую программную совместимость моделей. Помимо указанных моделей фирмы TRW предлагает также пакет Mark II - программный эмулятор НС.

     - Другой интересной моделью является нейрокомпьютер NETSIM, созданный фирмой Texas Instruments на базе разработок Кембриджского университета. Его топология представляет собой трехмерную решетку стандартных вычислительных узлов на базе процессоров 80188. Компьютер NETSIM используется для моделирования таких моделей НС, как сеть Хопфилда Кохонена и НС с обратным распространением. Его производительность достигает 450 млн. межсоединений/с.

     Фирма Computer Recognitiion Systems (CRS) продает серию нейрокомпьютеров WIZARD/CRS 1000, предназначенных для обработки видеоизображений. Размер входной изображения 512 x 512 пикселей. Модель CRS 1000 уже нашла применение в промышленных системах автоматического контроля.

     Сегодня на рынке представлено много моделей нейрокомпьютеров. На самом деле их, видимо, гораздо больше, но наиболее мощные и перспективные модели по-прежнему создаются по заказам военных. К сожалению, не имея достаточной информации о моделях специального назначения, трудно составить представление об истинных возможностях современных компьютеров. 

 

      Выводы  

     НС принадлежат классу коннекционистских моделей обработки информации. Основная их черта использовать взвешенные связи между обрабатывающими элементами как принципиальное средство запоминания информации. Обработка в таких сетях ведется одновременно большим числом элементов, благодаря чему они терпимы к неисправностям и способны к быстрым вычислениям.

     Задать НС, способную решить конкретную задачу, - это значит определить модель нейрона, топологию связей, веса связей. Нейронные сети различаются между собой меньше всего моделями нейрона, а в основном топологией связей и правилами определения весов или правилами обучения, программирования.

     По структуре связей сети делятся на два больших класса: однослойные и многослойные. К однослойным относятся модель Хопфилда [1,21,30,42-44] и последующие разработки [38], некоторые типы модели нейронной сети, известной под названием "машина Больцмана" [28,29]. Многослойная сеть имеет входной, выходной и скрытые слои, на входной подается информация, с выходного снимается от- вет, скрытые слои участвуют в обработке [31].

     В настоящее время существует два подхода к решению задачи обучения НС решению задачи распознавания образов, оптимизации и т.д. Один, исторически более ранний, состоит в постепенной модификации весовых коэффициентов в процессе обучения.

     Подходы к обучению однослойных и многослойных сетей различны. Обучение многослойных сетей состоит в том, что на основе набора примеров входное состояние -> выходное состояние постепенно подбираются веса всех связей так, чтобы каждое входное состояние вызывало соответствующее выходное. Обучающие алгоритмы представляют собою итерационные процедуры с медленным приближением к окончательным значениям весов связей. Этот способ впервые был реализован в персептроне Розенблата и локальных правилах обучения на основе модели Хебба. В последующие годы этот подход получил дальнейшее развитие в алгоритмах типа обратного распространения.

     В однослойных сетях часто удается выразить веса связей через параметры задачи (так обстоит дело с моделью Хопфилда и однослойной машиной Больцмана) . Подход состоит в вычислении значений синаптических весов на основе заданного описания функционирования нейронной сети как "черного ящика". Если сеть должна реализовать заданную функцию, ее рассматривают как набор элементов пороговой логики и задача сводится к кусочно-линейной аппроксимации этой зависимости и синтезу соответствующего автомата.

     Для общего случая, когда описание поведения сети задано в виде набора векторов возможных состояний, поиск синаптических весов сводится к решению соответствующей системы нелинейных уравнений. Такое решение было впервые найдено Хопфилдом. Появление этой работы около 10 лет назад продемонстрировало эффективность применения аналитических методов для интерпретации поведения нейронных сетей и привело к разработке проекционного алгоритма, позволяющего вычислять значения синаптических весов, сократив тем самым затраты времени на обучение.

     Исследования проекционного алгоритма показывают, что при очевидных достоинствах ему свойственен ряд недостатков, в частности склонность сети к ложным реакциям и низкая эффективность при доучивании, когда необходимо ввести новые данные, не разрушая информации, запомненной ранее. Кроме того, до настоящего времени принято считать, что данный алгоритм пригоден лишь для полносвяз- ных нейронных сетей и неприменим в сетях другой архитектуры. Указанные недостатки и малая изученность таких вопросов, как структура и частота появления ложных реакций, реализация итеративных процедур доучивания и применение в неполносвязных сетях, затрудняет использование проекционного алгоритма в исследованиях по нейробионике и при проектировании нейропроцессоров. Недостатком проекционного алгоритма с точки зрения решения задачи прогнозирования является то, что при обучении необходимо с начала сформировать эталоны распознаваемых образов. В задаче прогнозирования это либо вовсе невозможно, либо чрезвычайно затруднено. Эталоны должны формироваться в самой сети на основе анализа исторических данных.

     Исходя из вышеизложенного, можно заключить, что для решения задач прогнозирования наиболее подходит сеть с обратным распространением. Она позволяет формальным образом обучить сеть прогнозировать изменение требования на основе исторических данных о требовании. 

 

     3. Прогнозирование на основе нейронных сетей  

     В данной главе описан способ прогнозирования с помощью НС, основанный на методе окон. Также приведен обзор применения НС в финансовой сфере.  

     3.1 Общий подход к прогнозированию с помощью нейронных сетей  

     На НС задача прогнозирования формализуется через задачу распознавания образов. Данных о прогнозируемой переменной за некоторый промежуток времени образуют образ, класс которого определяется значением прогнозируемой переменной в некоторый момент времени за пределами данного промежутка т.е. значением переменной через интервал прогнозирования. Метод окон предполагает использование двух окон Wi и Wo с фиксированными размерами n и m соответственно. Эти окна, способны перемещаться с некоторым шагом по временной последовательности исторических данных, начиная с первого элемента, и предназначены для доступа к данным временного ряда, причем первое окно Wi, получив такие данные, передает их на вход нейронной сети, а второе - Wo - на выход. Получающаяся на каждом шаге пара Wi -> Wo (3.1) используется как элемент обучающей выборки (распознаваемый образ, или наблюдение) .

     Например, пусть есть данные о еженедельных продажах режущего инструмента (k = 16) : 100 94 90 96 91 94 95 99 95 98 100 97 99 98 96 98 (3.2) Весь ряд смотри приложение 1. Зададим n = 4, m = 1, s = 1. С помощью метода окон для нейронной сети будет сгенерирована следующая обучающая выборка: 100 94 90 96 -> 91 94 90 96 91 -> 94 90 96 91 94 -> 95 (3.3) 96 91 94 95 -> 99 91 94 95 99 -> 95 и т.д.

     Каждый следующий вектор получается в результате сдвига окон Wi и Wo вправо на один элемент (s = 1) . Предполагается наличие скрытых зависимостей во временной последовательности как множестве наблюдений. Нейронная сеть, обучаясь на этих наблюдениях и соответственно настраивая свои коэффициенты, пытается извлечь эти закономерности и сформировать в результате требуемую функцию прогноза P.

     Прогнозирование осуществляется по тому же принципу, что и формирование обучающей выборки. При этом выделяются две возможности: одношаговое и многошаговое прогнозирование.

     Многошаговое прогнозирование

     Используется для осуществления долгосрочного прогноза и предназначено для определения основного тренда и главных точек изменения тренда для некоторого промежутка времени в будущем. При этом прогнозирующая система использует полученные (выходные) данные для моментов времени k+1, k+2 и т.д. в качестве входных данных для прогнозирования на моменты времени k+2, k+3 и т.д.

     Предположим, система обучилась на временной последовательности (3.2). Затем она спрогнозировала k+1 элемент последовательности, например, равный 95, когда на ее вход был подан последний из известных ей образов (99,98,96,98) . После этого она осуществляет дальнейшее прогнозирование и на вход подается следующий образ (98,96,98,95) . Последний элемент этого образа является прогнозом системы. И так далее.

     Одношаговое прогнозирование

     Используется для краткосрочных прогнозов, обычно - абсолютных значений последовательности. Осуществляется прогноз только на один шаг вперед, но используется реальное, а не прогнозируемое значение для осуществления прогноза на следующем шаге.

     Для временной последовательности 3.2. На шаге k+1 система прогнозирует требование 95, хотя реальное значение (смотри приложение 1) должно быть 96. На шаге k + 2 в качестве входного образа будет использоваться образ (98,96,98,96) .

     Как было сказано выше, результатом прогноза на НС является класс к которому принадлежит переменная, а не ее конкретное значение. Формирование классов должно проводиться в зависимости от того каковы цели прогнозирования. Общий подход состоит в том, что область определения прогнозируемой переменной разбивается на классы в соответствии с необходимой точностью прогнозирования. Классы могут представлять качественный или численный взгляд на изменение переменной. 

     3.2 Применение нейронных сетей в финансовой сфере  

     Характерный пример успешного применения нейронных вычислений в финансовой сфере управление кредитными рисками. Как известно, до выдачи кредита банки проводят сложные статистические расчеты по финансовой надежности заемщика, чтобы оценить вероятность собственных убытков от несвоевременного возврата финансовых средств. Такие расчеты обычно базируются на оценке кредитной истории, динамике развития компании, стабильности ее основных финансовых показателей и многих других факторов. Один широко известный банк США опробовал метод нейронных вычислений и пришел к выводу, что та же задача по уже проделанным расчетам подобного рода решается быстрее и точнее. Например, в одном из случаев оценки 100 тыс. банковских счетов новая система, построенная на базе нейронных вычислений, определила свыше 90% потенциальных неплательщиков.

     Другая очень важная область применения нейронных вычислений в финансовой сфере предсказание ситуации на фондовом рынке. Стандартный подход к этой задаче базируется на жестко фиксированном наборе "правил игры", которые со временем теряют свою эффективность из-за изменения условий торгов на фондовой бирже. Кроме того, системы, построенные на основе такого подхода, оказываются слишком медленными для ситуаций, требующих мгновенного принятия решений. Именно поэтому основные японские компании, оперирующие на рынке ценных бумаг, решили применить метод нейронных вычислений. В типичную систему на базе нейронной сети ввели информацию общим объемом в 33 года деловой активности нескольких организаций, включая оборот, предыдущую стоимость акций, уровни дохода и т.д. Самообучаясь на реальных примерах, система нейронной сети показала большую точность предсказания и лучшее быстродействие: по сравнению со статистическим подходом дала улучшение результативности в целом на 19%.

     Следующий пример, довольно близкий к области финансового рынка, - оценка стоимости недвижимости. Решение этой задачи зависит в основном от опыта сотрудника риэлтерской фирмы, учитывающего множество таких неравноценных факторов, как доля собственности, качество постройки, окружающая обстановка и т.д. Группа исследователей из университета г. Портсмут (Великобритания) заложила в вычислительную систему на базе нейронной сети данные по оценке недвижимости из обзоров риэлтеровских фирм и списков аукционных цен. Результат показал, что самообучившаяся система дает оценки стоимости, хорошо коррелируемые с экспертными заключениями специалистов этого профиля.

Информация о работе Прогнозирование на основе аппарата нейронных сетей