Автор работы: Пользователь скрыл имя, 28 Декабря 2011 в 00:41, курсовая работа
В данной дипломной работе разработан оригинальнй подход к проблеме прогнозирования, на основе нейронных сетей. При помощи нейронной сети основанной на алгоритме обратного функционирования, были спрогнозированы изменения курса доллара США по отношению к украинскому карбованцу. Эксперимент дал хорошие результаты по достоверности. Разработанна модель прогнозирования может быть применена и при прогнозировании других экономических показателей.
Заметим, что концептуальная модель основана на асимптотическом снижении убытков при использовании результатов прогнозирования. Таким образом, каждый дополнительный доллар, потраченный на прогнозирование дает меньшее снижение риска убытков, чем предыдущий. За некоторой точкой, дополнительные затраты на прогнозирование могут вовсе не приводить к снижению потерь. Это связано с тем, что невозможно снизить среднюю ошибку прогнозирования ниже определенного уровня, вне зависимости от того насколько сложен примененный метод прогнозирования.
Поскольку прогнозирование никогда не сможет полностью уничтожить риск при принятии решений, необходимо явно определять неточность прогноза. Обычно, принимаемое решение определяется результатами прогноза (при этом предполагается, что прогноз правильный) с учетом возможной ошибки прогнозирования.
Сказанное выше предполагает, что прогнозирующая система должна обеспечивать определение ошибки прогнозирования, также как и само прогнозирование. Такой подход значительно снижает риск объективно связанный с процессом принятия решений.
Необходимо
отметить, что прогнозирование это не
конечная цель. Прогнозирующая система
это часть большой системы менеджмента
и как подсистема, она взаимодействует
с другими компонентами системы, играя
немалую роль в получаемом результате.
1.2
Основные понятия и определения проблемы
прогнозирования
Необходимо отметить, что мы рассматриваем прогнозирование в целях планирования производства или управления запасами. Таким образом, наш интерес лежит в определении будущих продаж продукта, или использовании материалов. Обычно мы будем ссылаться на интересующую нас переменную, как на "требование". Конечно, только такое применение предложенных методов не обязательно и прогнозирование быть проведено для каких-либо других целей и включать другие типы переменных. Однако, предполагая именно такую направленность, мы сформулируем специальные комментарии, описывающие общие принципы решения проблемы прогнозирования. Сформулированные принципы могут быть применены при прогнозировании в других целях.
Для того чтобы определить проблему прогнозирования, рассмотрим ее подробнее. Результаты прогнозирования используются для поддержки принятия решений. Следовательно, природа принимаемых решений определяет большинство желаемых характеристик прогнозирующей системы. Изучение решаемой проблемы должно помочь ответить на вопросы о том, что нужно прогнозировать, какую форму должен принять прогноз, какие временные элементы включаются и какова желательная точность прогноза.
При определении того, что нужно прогнозировать, мы указываем переменные, которые анализируются и предсказываются. Здесь очень важен требуемый уровень детализации. Система проектирования производства может требовать прогноз требуемого количества продукции в единицах по каждому виду конечного продукта производимого предприятием и прогноз по запасным частям для оборудования предприятия. С другой стороны, менеджер по продаже может потребовать только прогноз общей суммы продажи продукта в долларах, для определения вклада в бюджет. В первом случае прогнозирование построено на единичном базисе, во втором случае прогнозирование построено на обобщенном базисе. Пока от нас требуется результирующая информация первого или второго типа нельзя однозначно выбрать анализируемые переменные. При планировании производства мы можем прогнозировать на некотором обобщенном уровне, например, на уровне семейства продуктов и потом разбить обобщенный прогноз до единичного уровня, используя дополнительные расчеты. При прогнозировании общей суммы продаж в долларах, мы можем прогнозировать продажу по каждому из продуктов, скажем того же семейства продуктов, результат преобразовать в доллары, используя предсказанные цены и потом оценить общий уровень продаж в долларах.
На используемый уровень детализации влияет множество факторов: доступность и точность данных, стоимость анализа и предпочтения менеджера. В ситуациях, когда наилучший набор переменных неясен, можно попробовать разные альтернативы и выбрать один из вариантов, дающий наилучшие результаты. Обычно так осуществляется выбор при разработке прогнозирующих систем, основанных на анализе исторических данных.
Второй важный этап при построении прогнозирующей системы - это определение следующих трех параметров: периода прогнозирования, горизонта прогнозирования и интервала прогнозирования. Период прогнозирования - это основная единица времени, на которую делается прогноз. Мы можем пожелать знать требование на продукт через неделю. В этом случае период - неделя. Горизонт прогнозирования - это число периодов в будущем, которые покрывает прогноз. То есть, нам может понадобиться прогноз на 10 недель вперед, с данными по каждой неделе. В этом случае период неделя, а горизонт - 10 недель. Наконец, интервал прогнозирования - частота, с которой делается новый прогноз. Часто интервал прогнозирования совпадает с периодом прогнозирования. В этом случае прогноз пересматривается каждый период, используя требование за последний период и другую текущую информацию в качестве базиса для пересматриваемого прогноза. Если горизонт всегда имеет одну и ту же длину (Т-периодов) и прогноз пересматривается каждый период, говорят что мы работаем на основе движущего горизонта. В этом случае, мы репрогнозируем требование для Т-1 периода и делаем оригинальный прогноз для периода Т.
Выбор периода и горизонта прогнозирования обычно диктуется условиями принятия решений в области, для которой производится прогноз. Для того, чтобы прогнозирование имело смысл, горизонт прогнозирования должен быть не меньше, чем время, необходимое для реализации решения принятого на основе прогноза. Таким образом, прогнозирование очень сильно зависит от природы принимаемого решения. В некоторых случаях, время, требуемое на реализацию решения не определено, например, как в случае поставки запасных частей для пополнения запасов ремонтных предприятий. Существует методы работы в условиях подобной неопределенности, но они повышают вариацию ошибки прогнозирования. Поскольку с увеличением горизонта прогнозирования точность прогноза, обычно, снижается, часто мы можем улучшить процесс принятия решения, уменьшив время, необходимое на реализацию решения и, следовательно, уменьшив горизонт и ошибку прогнозирования.
Интервал прогнозирования часто определяется операционным режимом системы обработки данных, которая обеспечивает информацию о прогнозируемой переменной. В том случае, если уровень продаж сообщается ежемесячно, возможно для еженедельного прогноза продаж этих данных недостаточно и интервал прогнозирования месяц является более обоснованным.
Хотя различие не велико, мы хотели бы обратить внимание на различие между данными за период и точечными данными. Данные за период характеризуют некоторый период времени. Например, общий уровень продаж за месяц, и средняя температура за день, характеризуют период времени. Точечные данные представляют значение переменной в конкретный момент времени, например, количество запасных частей на конец месяца и температура в полдень. Различие между этими двумя типами данных важно в основном для выбора используемой системы сбора данных, процесса измерений и определения ошибки прогнозирования.
Третьим аспектом прогнозирования является требуемая форма прогноза. Обычно при прогнозировании проводится оценка ожидаемого значения переменной, плюс оценка вариации ошибки прогнозирования или промежутка, на котором сохраняется вероятность содержания реальных будущих значений переменной. Этот промежуток называется предсказуемым интервалом.
В некоторых случаях нам не так важно предсказание конкретных значений прогнозируемой переменной, как предсказание значительных изменений в ее поведении. Такая задача возникает, например, при управлении технологическими процессами, когда нам необходимо предсказывать момент, когда процесс перейдет в неуправляемое состояние.
Точность прогноза, требуемая для конкретной проблемы, оказывает огромное влияние на прогнозирующую систему. Важнейшей характеристикой системы управления является ее способность добиваться оптимальности при работе с неопределенностью.
До сих пор, мы обсуждали набор проблем связанных с процессом принятия решения. Существует ряд других факторов, которые также необходимо принимать во внимание при рассмотрении проблемы прогнозирования. Один из них связан с процессом, генерирующим переменную. Если известно, что процесс стабилен, или существуют постоянные условия, или изменения во времени происходит медленно - прогнозирующая система для такого процесса может достаточно сильно отличаться от системы, которая должна производить прогнозирование неустойчивого процесса с частыми фундаментальными изменениями. В первом случае, необходимо активное использование исторических данных для предсказания будущего, в то время как во втором лучше сосредоточиться на субъективной оценке и прогнозировании для определения изменений в процессе.
Другой фактор это доступность данных. Исторические данные необходимы для построения прогнозирующих процедур; будущие наблюдения служат для проверки прогноза. Количество, точность и достоверность этой информации важны при прогнозировании. Кроме этого необходимо исследовать представительность этих данных. Классическим примером, является прогнозирование требования клиентов на производимый продукт, когда компания хранит записи о заказах по времени их доставки.
Такой учет не отражает фактического требования, так как в нем не учитываются заказы, поставленные раньше срока, и заказы отмененные из-за неудовлетворительного срока поставки. Компания должна установить специальную процедуру сбора данных, если ее интересует информация о том, сколько же ее клиенты на самом деле желают приобрести продукции. Проблемы подобного типа возникают также, когда не учитываются потери продаж из-за ограниченных возможностей производства.
Источником ошибок при прогнозировании продаж является различие между прогнозом "того, что может быть продано" и "тем, что будет продано". Первая задача оценивает реальную возможность для компании продать свой продукт, без учета ограничений по объему. Такой прогноз необходим при определении доли продукта в общем производстве. Вторая задача отражает ограничения объема производства, решение менеджеров, а также план или цель. Такой прогноз, скорее, следует назвать бюджетом. Здесь мы предполагаем, что прогноз продажи, в большинстве случаев, будет коррелировать с бюджетом продажи - ведь цель менеджера бороться за то, чтобы повысить уровень продаж.
Необходимо отметить вычислительные ограничения прогнозирующих систем. Если изредка прогнозируется несколько переменных, то в системе возможно применение более глубоких процедур анализа, чем если необходимо часто прогнозировать большое число переменных. В последней ситуации, необходимо большое внимание уделить разработке эффективного управления данными.
И,
наконец, два важных фактора проблемы
прогнозирования - возможности и интерес
людей, которые делают и используют прогноз.
В идеале, историческая информация анализируется
автоматически, и прогноз представляется
менеджеру для возможной модификации.
Введение эксперта в процесс прогнозирования
является очень важным, но требует сотрудничества
опытных менеджеров. Далее прогноз передается
менеджерам, которые используют его при
принятии решений. И даже если они говорят,
что прогноз это всего лишь болтовня, они
могут получить реальную пользу от его
использования.
1.3
Методы прогнозирования
Методы прогнозирования можно разделить на два класса квалитативные и квантитативные, в зависимости от того, какие математические методы используются.
Квалитативные процедуры производят субъективную оценку, основанную на мнении экспертов. Обычно, это формальная процедура для получения обобщенного предсказывания, на основе ранжирования и обобщения мнения экспертов (например на основе методов Делфи) . Эти процедуры основываются на опросах, тестах, оценке эффективности продаж и исторических данных, но процесс с помощью которого получается прогноз остается субъективным.
С другой стороны, квантиативные процедуры прогнозирования явно объявляют - каким образом получен прогноз. Четко видна логика и понятны математические операции. Эти методы производят исследование исторических данных для того, чтобы определить глубинный процесс, генерирующий переменную и предположив, что процесс стабилен, использовать знания о нем для того, чтобы экстраполировать процесс в будущее. К квантитативным процедурам прогнозирования относятся методы, основанные на статистическом анализе, анализе временных последовательностей, байесовском прогнозировании, наборе фрактальных методов, нейронных сетях.
Сейчас используется два основных типа моделей: модели временных последовательностей и причинные модели.
Временная последовательность - это упорядоченная во времени последовательность наблюдений (реализаций) переменной. Анализ временных последовательностей использует для прогнозирования переменной только исторические данные об ее изменении. Таким образом, если исследование данных о ежемесячных продажах автомобильных шин, показывает, что они линейно возрастают - для представления данного процесса может быть выбрана линейная модель тренда. Наклон и смещение этой прямой могут быть оценены на основе исторических данных. Прогнозирование может быть осуществлено путем экстраполяции подходящей модели.
Информация о работе Прогнозирование на основе аппарата нейронных сетей