Автор работы: Пользователь скрыл имя, 28 Декабря 2011 в 00:41, курсовая работа
В данной дипломной работе разработан оригинальнй подход к проблеме прогнозирования, на основе нейронных сетей. При помощи нейронной сети основанной на алгоритме обратного функционирования, были спрогнозированы изменения курса доллара США по отношению к украинскому карбованцу. Эксперимент дал хорошие результаты по достоверности. Разработанна модель прогнозирования может быть применена и при прогнозировании других экономических показателей.
36. Hebb D. O. The organization of behaviour. N. Y.: Wiley, 1949.
37. Hopfield J. J. Neural networks and physical systems with emergent collective computational abilities.//Proc. Natl. Acad. Sci. 1984. V. 9. p. 147-169.
38. Hopfield J. J., Tank D. W. Neural computation of decision in optimization problems.//Biol. Cybernet. 1985. V. 52. p.
39. Hopfield J. J., Feinstein D. I., Palmer F. G. Unlearning has a stabilizing effect in collective memories//Nature. 1983. V. 304. P. 141-152.
40. Hopfield J. J., Tank D. W. Neural computation of decision in optimization problems//Biol. Cybernet. 1985. V. 52. P. 141-152.
41. Jeffery W., Rosner R. Neural network processing as a tool for friction optimization.//Neuronet Comput. Conf., Snowbird, Utah, Apr. 13-16,1986. New York, N. Y., 1986 - p. 241-246.
42. Kuzewski Robert M., Myers Michael H., Grawford William J. Exploration of fourword error propagation as self organization structure.//IEEE Ist. Int. Conf. Neural Networks, San Diego, Calif., June 21-24,1987. V. 2. - San Diego, Calif., 1987. - p. 89-95.
43. Lippmonn Richard P. Gold Ben Neuronet classifiers useful for speech recognition.// IEEE Ist. Conf. Neural Networks, San Diego, (Calif) , 1987 - p. 417-425.
44. Montgomery, Douglas C. Forecasting and time series analysis./Douglas C. Montgomery, Lynwood A. Johnson, John S. Gard iner. - 2nd ed. - ISBN 0-07-042858-1.
45. Neural Computing.// London: IBE Technical Services, 1991.
46. Rosenblatt F. The peseptron: a probabilistic model for information storage and organization in the brain//Psychol. Rev.
1958. V. 65. P. 386.
- 47. Rosenblatt F. Principles of neurodynamics. Spartan., Washington, D. C., 1962.
48. Rumelhart B. E., Minton G. E., Williams R. J. Learning representations by back propagating error.// Wature, 1986. V. 323. p. 1016-1028.
49. Takefuji D. Y. A new model of neural networks for error correction.//Proc. 9th Annu Conf. IEEE Eng. Med. and Biol. Soc., Boston, Mass., Nov. 13-16,1987. V. 3, New York, N. Y., 1987 - p. 1709-1710.
50. Treliven P. Neurocomputers.// London: University college, 1989.
Информация о работе Прогнозирование на основе аппарата нейронных сетей