Правильные многогранники

Автор работы: Пользователь скрыл имя, 31 Марта 2011 в 19:06, реферат

Описание работы

Основная цель данного проекта – познакомиться с понятием правильных многогранников и выявить основные особенности исследования Платоновых тел.

Постановка такой цели предопределила формулировку следующих задач:

1.Изучить историю открытий в области правильных многогранников
2.Определить основные этапы исследований Платоновых тел, их содержание, взаимосвязь
3.Выявить и охарактеризовать основные составляющие исследований правильных многогранников, их динамику и особенности

Содержание работы

Введение 3-4

Глава 1. Элементы теории правильных многогранников 5-10

§ 1. Определение многогранника и его элементов 5-6

§ 2. Пять правильных многогранников 7-8

§ 3. Теорема Эйлера 9

Глава 2. Исследования правильных многогранников в

период до нашей эры 10-12

Глава 3. Исследования правильных многогранников

в XVI – XIX вв. 13-15

Глава 4. Правильные многогранники в нашей жизни 16-18

§ 1. Многогранники вокруг нас 16-17

§ 2. Правильные многогранники в искусстве 18

Примеры задач 19-22

Заключение 23-24

Приложения 25-34

Список литературы 35

Файлы: 1 файл

Научно-исследовательский проект.doc

— 777.00 Кб (Скачать файл)

В рамках этого этапа, на мой взгляд, можно  выявить  две основных составляющих:

1. Теория  «4 стихий» Платона

2. Построение  правильных многоугольников   Евклидом

  Гармоничные отношения древние греки считали  основой мироздания, поэтому четыре стихии у них были связаны такой  пропорцией: земля/вода = воздух/огонь. Атомы "стихий" настраивались Платоном в совершенных консонансах, как четыре струны лиры. Напомню, что консонансом называется приятное созвучие. Надо сказать, что своеобразные музыкальные отношения в Платоновых телах являются чисто умозрительными и не имеют под собой никакой геометрической основы. Этими отношениями не связаны ни число вершин Платоновых тел, ни объемы правильных многогранников, ни число ребер или граней.

  В связи с этими телами уместно  будет сказать, что первая система  элементов, включавшая четыре элемента - землю, воду, воздух и огонь, - была канонизирована Аристотелем. Эти элементы оставались четырьмя краеугольными камнями мироздания в течение многих веков. Вполне возможно отождествить их с известными нам четырьмя состояниями вещества - твердым, жидким, газообразным и плазменным.7

  Эвклид  в своих «Началах» занимался  построением правильных многоугольников  в книге IV, решая задачу для n = 3, 4, 5, 6, 15. Кроме этого, он уже определил  первый критерий построимости многоугольников: хотя этот критерий и не был озвучен в «Началах», древнегреческие математики умели построить многоугольник с 2m сторонами (при целом m > 1), имея уже построенный многоугольник с числом сторон 2m - 1: пользуясь умением разбиения дуги на две части, из двух полуокружностей мы строим квадрат, потом правильный восьмиугольник, правильный шестнадцатиугольник и так далее. Кроме этого, в той же книге Евклид указывает и второй критерий: если известно, как строить многоугольники с r и s сторонами, и r и s взаимно простые, то можно построить и многоугольник с r · s сторонами. Синтезируя эти два способа, можно прийти к выводу, что древние математики умели строить правильные многоугольники со  сторонами, где m — целое неотрицательное число, p1,p2 — числа 3 и 5, а k1,k2 принимают значения 0 или 1.

  Начиная с 7 века до нашей эры в Древней       Греции создаются философские школы ,  в которых происходит постепенный  переход         от практической к философской геометрии.   Большое значение в этих  школах приобретают рассуждения, с  помощью которых удалось получать новые геометрические свойства.

  Одной из первых и самых известных школ была Пифагорейская, названная в честь своего основателя Пифагора.

  Отличительным знаком пифагорейцев была пентаграмма, на языке математики - это правильный невыпуклый   или звездчатый пятиугольник.  

  Пентаграмме присваивалось способность защищать человека от злых духов. Существование  только пяти правильных многогранников относили к строению материи и  Вселенной. Пифагорейцы, а затем  Платон полагали, что материя состоит из четырех  основных элементов:  огня, земли, воздуха и воды.

Средневековая математика почти никак не продвинулась в вопросе построения правильных многогранников. Начался новый период изучения правильных многогранников, который я рассмотрю в следующей главе. 
 
 
 
 
 
 
 
 
 
 

Глава 3

Исследования  правильных многогранников в XVI – XIX вв. 

 А  теперь от Древней Греции перейдём к Европе XVI – XVII вв., когда жил и творил замечательный немецкий астроном, математик Иоганн Кеплер (1571-1630). Представим себя на месте Кеплера. Перед ним различные таблицы – столбики цифр. Это результаты наблюдений движения планет Солнечной системы – как его собственных, так и великих предшественников – астрономов. В этом мире вычислительной работы он хочет найти некоторые закономерности. Иоганн Кеплер, для которого правильные многогранники были любимым предметом изучения, предположил, что существует связь между пятью правильными многогранниками и шестью открытыми к тому времени планетами Солнечной системы. Согласно этому предположению, в сферу орбиты Сатурна можно вписать куб, в который вписывается сфера орбиты Юпитера.  
В неё, в свою очередь, вписывается тетраэдр, описанный около сферы орбиты Марса. В сферу орбиты Марса вписывается додекаэдр, в который вписывается сфера орбиты Земли. А она описана около икосаэдра, в который вписана сфера орбиты Венеры. Сфера этой планеты описана около октаэдра, в который вписывается сфера Меркурия. Такая модель Солнечной системы получила название «Космического кубка» Кеплера. Результаты своих вычислений учёный опубликовал в книге «Тайна мироздания». Он считал, что тайна Вселенной раскрыта. Год за годом учёный уточнял свои наблюдения, перепроверял данные коллег, но, наконец, нашёл в себе силы отказаться от заманчивой гипотезы. Однако её следы просматриваются в третьем законе Кеплера, где говориться о кубах средних растояний от Солнца.  
Сегодня можно с уверенностью утверждать, что расстояния между планетами и их число никак не связаны с многогранниками. Конечно, структура Солнечной системы не является случайной, но истинные причины, по которым она устроена так, а не иначе, до сих пор не известны. Идеи Кеплера оказались ошибочными, но без гипотез, иногда самых неожиданных, казалось бы, бредовых, не может существовать наука.8

  Кроме полуправильных многогранников, из правильных многогранников – Платоновых тел можно получить так называемые правильные звездчатые многогранники. Их всего четыре. Первые два были открыты И. Кеплером (1571 – 1630 гг.), а два других были построены почти двести лет спустя французским математиком и механиком Луи Пуансо (1777 – 1859 гг.). Именно поэтому правильные звездчатые многогранники получили название тел Кеплера – Пуансо. В работе «О многоугольниках и многогранниках» (1810 г.) Луи Пуансо перечислил и описал все правильные звездчатые многогранники, поставил, но не решил вопрос о существовании правильных многогранников, число граней которых отлично от 4, 6, 8, 12, 20. Ответ на этот вопрос был дан год спустя, в 1811 году, французским математиком Огюстом Луи Коши (1789 – 1857 гг.) в работе «Исследование о многогранниках». В ней доказывается, что не существует других правильных многогранников, кроме перечисленных Пуансо. Автор приходит к выводу, что правильные звездчатые многогранники получаются из выпуклых правильных многогранников путем продолжения их ребер или граней, исследуется вопрос, из каких именно правильных многогранников могут быть получены правильные звездчатые многогранники. Делается вывод о том, что тетраэдр, куб и октаэдр не имеют звездчатых форм, додекаэдр имеет три, а икосаэдр – одну звездчатую форму (это малый звездчатый додекаэдр, большой додекаэдр и большой икосаэдр). 9 
Таким образом, в рамках второго этапа исследований можно выявить 3 составляющих:

  1. «Космический кубок» Кеплера
  2. Работа «О многоугольниках и многогранниках» и теория правильных звездчатых многогранников Луи Пуансо
  3. Работа «Исследование многогранников» Луи Коши
 

Луи Кэрролл  писал: "Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных  наук".  
В глубины, каких наук пробрались правильные многогранники? Где в жизни мы можем их повстречать? На этот вопрос постараемся дать ответ в следующей главе
 
 
 
 
 
 
 
 
 
 
 
 
 

Глава 4

  Правильные  многогранники в  нашей жизни

  § 1. Многогранники  вокруг нас 

  Правильные многогранники – самые выгодные фигуры, поэтому они широко распространены в природе. Подтверждением тому служит форма некоторых кристаллов. Например, кристаллы поваренной соли имеют форму куба.

  При производстве алюминия пользуются алюминиево-калиевыми  кварцами (K[Al(SO4)2] × 12H2O), монокристалл которых имеет форму правильного октаэдра. Получение серной кислоты, железа, особых сортов цемента не обходится без сернистого колчедана (FeS). Кристаллы этого химического вещества имеют форму додекаэдра. В разных химических реакциях применяется сурьменистый сернокислый натрий (Na5(SbO4(SO4)) – вещество, синтезированное учёными. Кристалл сурьменистого сернокислого натрия имеет форму тетраэдра. Последний правильный многогранник – икосаэдр передаёт форму кристаллов бора.

  Правильные  многогранники встречаются так  же и в живой природе. Например, скелет одноклеточного организма феодарии (Circjgjnia icosahtdra) по форме напоминает икосаэдр.

  Чем же вызвана такая природная геометризация  феодарий? По-видимому, тем, что из всех многогранников с тем же числом граней именно икосаэдр имеет наибольший объём при наименьшей площади поверхности. Это свойство помогает морскому организму преодолевать давление водной толщи.

  Идеи  Платона и Кеплера о связи  правильных многогранников с гармоничным устройством мира и в наше время нашли своё продолжение в интересной научной гипотезе, которую в начале 80-х гг. высказали московские инженеры В. Макаров и В. Морозов. Они считают, что ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. Лучи этого кристалла, а точнее, его силовое поле, обуславливают икосаэдро-додекаэдровую структуру Земли. Она проявляется в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра.

  Многие  залежи полезных ископаемых тянутся  вдоль икосаэдро-додекаэдровой сетки; 62 вершины и середины рёбер многогранников, называемых авторами узлами, обладают рядом специфических свойств, позволяющих

  объяснить некоторые непонятные явления. Здесь  располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана. В этих узлах находятся озеро Лох-Несс, Бермудский треугольник.

  Дальнейшие  исследования Земли, возможно, определят отношение к этой научной гипотезе, в которой, как видно, правильные многогранники занимают важное место.10

  Интересно и то, что именно икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы установить его форму, брали различные многогранники, направляли на них свет под теми же углами, что и поток атомов на вирус. Оказалось, что только один многогранник дает точно такую же тень - икосаэдр. Его геометрические свойства, о которых говорилось выше, позволяют экономить генетическую информацию.

§ 2. Правильные многогранники  в искусстве

  В эпоху Возрождения большой интерес  к формам правильных многогранников проявили скульпторы. архитекторы, художники. Леонардо да  Винчи (1452 -1519) например, увлекался теорией многогранников и часто изображал их на своих полотнах. Он  проиллюстрировал правильными и полуправильными многогранниками книгу Монаха Луки Пачоли ''О божественной пропорции.''

  Знаменитый  художник эпохи возрождения Альбрехт Дюрер на переднем плане своей  гравюры «Меланхолия» изобразил  додекаэдр. В 1525 году он написал трактат, в котором представил, пять правильных многогранников, поверхности которых служат хорошими моделями перспективы

  Сальвадор Дали использует в своей картине  «Тайная вечеря» додекаэдр, который  служит своеобразным «окном» в окружающий мир и подчеркивает важность этого события.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Примеры задач

  Задача 1 Можно ли десять городов соединить между собой непересекающимися дорогами так, чтобы из каждого города выходило пять дорог, ведущих в пять других городов?  

  Решение Предположим, что города можно соединить между собой дорогами так, как указано в задаче. В таком случае, если какие-то два города окажутся не соединенными дорогой непосредственно, то найдётся третий город, который уже будет непосредственно соединён с каждым из них. Изобразив на плоскости города точками, а дороги — дугами, получим, что любые две точки соединены цепочкой дуг. Так как в каждой точке сходятся пять дуг, то общее число дуг равно ½·5·10 = 25. Согласно теореме Эйлера эти дуги делят плоскость на 2 + 25 – 10 = 17 областей. Каждая из этих семнадцати областей ограничена по крайней мере тремя дугами, так как в противном случае нашлись бы два города, непосредственно соединённые по крайней мере двумя дорогами, а это противоречит условию задачи. Следовательно, число дуг не меньше ½·3·17 = 25,5. Таким образом, исходное предположение приводит нас к противоречию, и города нельзя соединить между собой так, как это требуется в задаче.11 

Информация о работе Правильные многогранники