Автор работы: Пользователь скрыл имя, 23 Марта 2011 в 23:37, реферат
Дискретные динамические модели управляемых систем — это довольно важный в теоретическом и практическом отношении класс математических моделей, позволяющий охватить очень широкий круг реальных объектов и соответствующих им задач управления.
Содержание:
Введение……………………………………
1. Введение
Дискретные динамические модели управляемых систем — это довольно важный в теоретическом и практическом отношении класс математических моделей, позволяющий охватить очень широкий круг реальных объектов и соответствующих им задач управления. Они возникают как вполне естественные при моделировании дискретных процессов, таких как задачи распределения ресурсов, обработка и передача информации цифровыми электронными устройствами, либо опосредованно — при дискретизации непрерывных моделей для практических расчётов или с целью учёта неоднородности их поведения, либо чисто искусственным путём при организации различных итерационных вычислительных процедур.
К настоящему времени разработаны многочисленные точные и приближённые методы решения задач оптимального управления. Однако подавляющее их большинство относится к системам с непрерывным временем. Для систем с дискретным временем, в особенности нелинейных, их арсенал оказывается значительно беднее. Основная причина — отсутствие в общем случае дискретного аналога принципа максимума Понтрягина для непрерывных систем, вокруг которого
долгое время группировались в основном теоретические работы в области оптимального управления, основанные на методе вариаций и необходимых условиях оптимальности. Об этом свидетельствуют известные работы по дискретным системам [1-3] и др.
Значительно более продвинутыми оказываются результаты, основанные на принципе оптимальности Беллмана и общих достаточных условиях оптимальности Кротова [4]. К ним относятся условия локальной оптимальности и итерационные методы улучшения В. И. Гурмана [5]. В то же время разработано мало эффективных методов синтеза оптимального управления для нелинейных дискретных систем.
Данная работа посвящена приближённым методам синтеза законов оптимального управления на основе принципа оптимальности Кротова и глобальных оценок, которые не требуют априори хороших аналитических свойств исследуемых моделей.
Конкретно речь идет о следующих новых методах приближённого синтеза оптимального управления:
В первом разделе описывается дискретная модель управляемой системы, рассматриваются ее методические преобразования, дается постановка общей задачи оптимального управления, в том числе, в форме синтеза.
Во втором разделе дается метод приближенного синтеза оптимального управления, как одного из способов задания функции Кро- това на основе аппроксимации решения уравнения Беллмана степенным полиномом, в том числе точечную интерполяцию и аппроксимацию по методу наименьших квадратов.
В третьем разделе предлагается метод приближенного синтеза, основанный на восстановлении так называемой функции цены.
Обсуждаются их приложения к практическим задачам, в частности к задаче оптимизации пространственного маневра вертолета и задаче об оптимальной стратегии устойчивого развития.
2. Постановка задачи
Рассматривается дискретная задача оптимального управления [4] о минимуме функционала
N-1
I(x(i),u(i)) = F(x(N)) + ^ /0(i,x(i),u(i))
i=0
на множестве D, определенном следующими условиями:
(1) x(i + 1) = / (i,x(i),u(i)), i = 0,1 ,...,N — 1,
x(i) e Vx(i) С Rn, u(i) e Vu(i,x(i)) С Rr,
x(0) e Vx(0), x(N) e Vx(N).
В соответствии с теорией Кротова, с помощью произвольной функции p(i,x), строятся следующие конструкции:
R(i, x, u) = p(i + 1, /(i, x, u)) — p(i, x) — /о(i, x, u), G(x(0),x(N)) = F(x(N)) + p(N, x(N)) — p(0, x(0)),
P(i,x)= sup R(i,x,u), p(i) = sup P(i,x),
uЈV„(i,x(i)) x(i)eVx(i)
m = inf G(x(0),x(N)) : x(0) e V(x)(0),x(N) e V(x)(N).
Задача сводится к поиску такой последовательности пар
{(x(i),u(i))s}c D
и такой функции p (разрешающей, или функции Кротова), что выполняются достаточные условия оптимальности:
R(i,xs(i),us(i)) ^ i), G(xs(0),xs(N)) ^ m.
3. Аппроксимации степенным полиномом
Здесь
рассматривается метод
Предполагается, что Vx(0) = {x(0)} , Vx(i) = Rn, i = 0,1,... ,N. В данном случае функция G(x(0),x(N)) зависит только от x(N), так как левый конец траектории закреплен.
Функция p(i,x) выбирается так, чтобы P(i,x) не зависела от x, а функция G( x(N)) не зависела от x(N) , конкретно посредством известных соотношений типа Беллмана относительно p(i, x):
В общем случае их точное решение найти не удается, и приходится ограничиваться приближенными вычислениями.
Предлагаемый метод основан на аппроксимации разрешающей функции p(i,x) некоторым многомерным интерполяционным полиномом
a
где {ga(x)} — некоторый набор заданных базисных функций, {^a(i)} --соответствующий набор коэффициентов, подлежащих определению из условий интерполяции равенств (1):
[фa(i)] =[ga(xp W)]-^
SUPueU (i,x(i))(Ea фа(i + 1)ga(/(i,x(i),u)) — x(i), u)) в
где в — номер узловой точки, [(-)a] ,[(^)в],[(^)ae] —матрицы размером (слева направо) M х 1, M х 1, M х M.
Однако
в многомерных задачах при
интерполяции необходимо согласование
формы интерполяционного
В качестве интерполяционного полинома использована следующая известная в теории интерполяции конструкция:
(5)
p(i,x(i))= Ј ji = 1mi (xi(i)j X
(j (x2 (i)j (••• Ј jn=1mn j (i)(xn(ij)),
здесь 1j1,j2,...,jn(i) —неизвестные коэффициенты интерполяционного полинома, которые подлежат вычислению и которые, в конечном счете, определяют приближенно-оптимальный синтез управления. Число этих коэффициентов совпадает на регулярной решетке с числом узловых точек и равно произведению количества узловых точек по каждой из фазовых координат M = mi • m-2 mn.
При решении практических задач, как правило, диапазоны изменения фазовых координат либо заданы, исходя из физического смысла задачи, либо могут быть определены с помощью методов оценок множеств достижимости. Поэтому узловые линии (дискретные) для рассматриваемого интерполяционного полинома могут быть построены следующим образом. В некоторый момент времени i = i* диапазоны изменения фазовых координат разбиваются точками на mi — 1 отрезков по оси xi, на (m-2 — 1) отрезков по оси x2, и т.д. Через эти точки на каждой оси проводятся (n — 1)-мерные гиперплоскости, ортогональные этой оси. Взаимное пересечение этих гиперплоскостей определяет M = mi • m-2 mn узловых точек. Через них проводится регулярное семейство узловых линий xp(г),в = 1, 2,..., M выбранного вида, например, семейство прямых: xp(i) = const, линейных функций: xp(i) = Kii + Ко, парабол: xp(i) = K212 + Kii + Ко, и т. д. В этом случае коэффициенты 1&j1,j2,...j(i) интерполяционного полинома (5) будут либо константами, либо простыми функциями времени.
При постановке рассматриваемой задачи учитывалось только одно фазовое ограничение -- ограничение на левый конец траектории, которое в данном случае представляет собой заданную точку xo(0). Другие фазовые ограничения (или их совокупности) могут быть учтены с помощью известного метода штрафов.
Близость полученного нами приближенного синтеза оптимального управления u(i,x(i)) к строгому оптимуму можно определить с помощью следующей верхней оценки, доставляемой достаточными
N-i
Ј
i=0
+
Найденное управление тем ближе к оптимальному, чем меньше эта оценка. Возможность вычисления оценки—это важное преимущество перед «чистым» методом Беллмана. Она позволяет организовать регулярную процедуру уточнения приближённого решения за счет увеличения числа узлов интерполяции и их расположения в фазовом пространстве, а также дает критерий ее остановки.
Алгоритм описанного метода состоит из следующих этапов:
x(i + 1) = /(i,x(i),u(i,x)), i = 0,1,. .., N — 1, x(0) = xo
в направлении от 0 к N. В результате определяются приближённые оптимальные траектория и управление — пара (x(i),u(i)), на которой функционал I достигает приближенного абсолютного минимума в рассматриваемой области.
Разработана
также модификация данного
4. Метод восстановления функции цены
Здесь рассматривается другой метод приближенного синтеза, основанный на восстановлении так называемой функции цены. Под этим понимается зависимость функционала I(i, x), подсчитанного на некотором семействе решений системы (1), от значений i, x, рассматриваемых как начальные для траекторий этого семейства. Если решения оптимальны, то, как известно, функция цены становится функцией Беллмана, иначе — функцией Кротова, удовлетворяющей соотношениям (2), взятой с обратным знаком и порождающей оптимальный синтез управления. Если траектории семейства приближенно-оптимальные, то и полученный с их помощью синтез также будет приближенно-оптимальным. На этом основана предлагаемая процедура приближенно-оптимального синтеза, называемая методом восстановления функции цены, состоящая из следующих шагов:
Информация о работе Дискретная задача оптимального управления