Автор работы: Пользователь скрыл имя, 08 Сентября 2011 в 00:59, курсовая работа
Ставится задача о нахождении стационарного распределения температуры внутри многоугольника, если задано распределение температуры вдоль его сторон.
Одна из главных трудностей, возникающих при решении этой задачи, обусловлена сложной формой границы расчетной области. Аналитическое решение задачи Дирихле для уравнения (1) удается получить лишь в частных случаях для простейших областей (прямоугольник, круг сектор, шар). Основными методами решения поставленной задачи являются численные методы.
1. Введение.......................................................................................................
2. Аналитические методы решения уравнений в частных производных...
3. Численные методы решения уравнений матфизики................................
3.1. Метод конечных разностей...............................................................
3.2. Метод конечных элементов..............................................................
4. Дискретизация расчетной области.............................................................
5. Формирование матрицы неизвестных температур системы линейных уравне-ний......................................................................................................................
6. Построение изотерм.....................................................................................
6.1. Нахождение температур в любой точке.............................................
6.2. Алгоритм построения изотерм............................................................
7. Характеристика программы........................................................................
8. Результаты программы................................................................................
9. Список используемой литературы.............................................................
10. Приложение..................................................................................................
10.1. Листинг программы...........................................................................
СОДЕРЖАНИЕ
1.
ВВЕДЕНИЕ
В настоящее время мы наблюдаем широкое применение математических методов в самые различные сферы человеческой деятельности. Это не только технические и экономические науки, где эти методы давно стали главенствующими при исследовании изучаемых процессов или явлений, но и развивающиеся сейчас прикладные науки управления: менеджмент, социально–экономическое прогнозирование, теория оптимального управления и т.д. Математизация различных областей знания сегодня, математическое моделирование как инструмент познания завоёвывает всё новые позиции в различных областях деятельности человека.
Большинство физических законов природы можно сформулировать на языке дифференциальных уравнений с частными производными. Производные в этих уравнениях появляются, потому что они описывают важнейшие физические величины: скорость, ускорение, силу, температуру, трение и т.д. Таким образом, возникают уравнения в частных производными, содержащие неизвестную функцию, которую необходимо определить. Изучением математических моделей физических явлений, описываемых уравнениями в частных производных, занимается математическая физика.
В данной курсовой работе рассматривается одно из самых важных уравнений матфизики – уравнения Лапласа на примере решения задачи Дирихле в заданной плоской области.
Многие установившиеся процессы сводятся к уравнениям Лапласа.
Ставится задача о нахождении стационарного распределения температуры внутри многоугольника, если задано распределение температуры вдоль его сторон.
Одна из главных трудностей, возникающих при решении этой задачи, обусловлена сложной формой границы расчетной области. Аналитическое решение задачи Дирихле для уравнения (1) удается получить лишь в частных случаях для простейших областей (прямоугольник, круг сектор, шар). Основными методами решения поставленной задачи являются численные методы.
2.
АНАЛИТИЧЕСКИЕ МЕТОДЫ
РЕШЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ
Существует целый арсенал методов для решения уравнений в частных производных. Перечислим некоторые из них:
1) Метод разделения переменных
Уравнение с частными производными с n переменными сводится к n обыкновенным дифференциальным уравнениям. Существует множество разнообразных по форме областей, для которых можно в явном виде выписать решение задачи Дирихле для уравнения Лапласа. Например, для прямоугольника.
(рис. 1).
Рис.1 Прямоугольник с температурами на границе
где An , Bn, Cn, Dn – коэффициенты Фурье функций f1(x),f2(x),f3(y),f4(y) равные
2)Метод конформных отображений
Существует способ решения в областях со сложной границей. Этот способ основан на конформных отображениях (рис. 2).
Рис.2 Конформные отображения
При таком отображении уравнение Лапласа в плоскости z переходит снова в уравнение Лапласа, в координатной плоскости w не меняется.
После того, как решение получено в простой области, достаточно подставлять в это решение выражения: u=u(x,y), v=v(x,y) и мы получим решения исходной задачи.
3)введение новой переменной
Исходное
уравнение преобразуется к
4)Метод преобразования координат
Исходное уравнение сводится к более простому уравнению в новой системе координат.
5)Вариационные методы
Вместо уравнения с частными производными решается некоторая задача минимизации. Оказывается, что функция, доставляющая минимум некоторому выражению, является решением исходного уравнения.
6)Метод интегральных уравнений
Уравнения с частными производными сводится к интегральному уравнению (уравнению, в котором неизвестная функция стоит под знаком интеграла).
3.
ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ
УРАВНЕНИЙ МАТФИЗИКИ
3.1.
МЕТОД КОНЕЧНЫХ РАЗНОСТЕЙ
Для численного решения задач математической физики обычно применяется метод конечных разностей или метод сеток. К сеточным методам относятся те, в которых разыскивается таблица приближенных значений искомой функции в некоторой совокупности точек, называемой сеткой. Отдельные точки называются узлами сетки. Уравнения, которые служат для определения приближенного решения, называют сеточными. Основания для выбора сетки и для получения сеточных уравнений отличают один сеточный метод от другого.
Метод конечных разностей позволяет свести решение дифференциального уравнения к решению алгебраических (разностных) уравнений. Дифференциальная задача аппроксимируется дискретной разностной задачей.
Пусть на плоскости (x, y) задана область D, ограниченная замкнутой кривой L (рис.3). Рассмотрим задачу Дирихле для уравнения Лапласа
Для решения задачи (2) методом конечных разностей надо в области D+L построить сетку и аппроксимировать на этой сетке уравнение и краевое условие. Искомая функция определяется её значением в узлах сетки.
Узлы сетки, лежащие на границе области, называются граничными, а все остальные – внутренними. Для примера рассмотрим прямоугольную сетку. Они очень удобны при организации вычислительных алгоритмов.
Рис.3 Область D
Используя понятие частной производной, можно записать для малых шагов h1 и h2 (рис.3).
Тогда
В случае квадратной сетки уравнение (2) для нулевого элемента будет иметь вид:
Там, где узлы прямоугольной сетки не являются равноотстоящими, применяют следующие вычислительные шаблоны (рис. 4):
Рис.4 Сетка с разными длинами шага
Уравнение (2) будет иметь вид
Так
как вычислительные шаблоны связывают
лишь несколько соседних узлов, то матрица
коэффициентов системы линейных уравнений
для определенных узловых неизвестных
оказывается “разряженной”, т.е. содержит
много нулевых элементов.
3.2.
МЕТОД КОНЕЧНЫХ ЭЛЕМЕНТОВ
Метод конечных элементов (МКЭ) впервые был применен для численного решения дифференциальных уравнений в частных производных в середине 50-х годов ХХ столетия и с тех пор завоевал широкую популярность. О распространении МКЭ можно судить, что в одной из книг было приведено более 7 тыс. ссылок, содержащих указания на его применение в различных областях науки и техники.
Основная идея МКЭ состоит в том, что область расчета делится на конечное число элементов произвольной геометрической формы, и для каждого элемента рассматриваются так называемые базисные , принимающие значения, равные 1 в i-м узле элемента и нулевые во всех других узлах.
Тогда значение искомой функции внутри элемента выражаются через узловые неизвестные в виде:
Наиболее распространенными конечными элементами для двумерных задач являются треугольные элементы с линейными базисными функциями (S – площадь треугольника) (рис. 5):
Рис.5 Треугольник с площадью для расчета МКЭ
Положительное значение площади S обеспечивается нумерацией вершин треугольника против часовой стрелки. Проверим выполнение условия: , если m=n и , если .
Если ввести обозначения
Пусть область расчета D c границей Г покрыта треугольными элементами. Вершины, расположенные внутри области, определяют узловые неизвестные. Для их определяют систему линейных уравнений (рис. 6):
Рис.6 Область D c границей Г
где - значения искомой функции в узле j, а коэффициент определяется следующим интегралом:
Внутреннее суммирование ведётся по всем внутренним узлам, принадлежащим k-му элементу, а внешнее – по всем элементам, содержащим узел j. В рассматриваемой системе уравнений число неизвестных равно числу уравнений.
Информация о работе Численные методы решения задачи нахождения температуры