Автор работы: Пользователь скрыл имя, 21 Ноября 2010 в 18:36, Не определен
Курсовая работа
Левая часть уравнения (3) есть сумма третьего квадранта, а правая часть — итог второго квадранта. В целом же это уравнение показывает, что в межотраслевом балансе соблюдается важнейший принцип единства материального и стоимостного состава национального дохода.
В пункте 1 отмечено, что основу информационного обеспечения модели межотраслевого баланса составляет технологическая матрица, содержащая коэффициенты прямых материальных затрат на производство единицы продукции. Эта матрица является также основой экономико-математической модели межотраслевого баланса. Предполагается, что для производства единицы продукции в j-й отрасли требуется определенное количество затрат промежуточной продукции i-й отрасли, равное аij. Оно не зависит от объема производства в отрасли и является довольно стабильной величиной во времени. Величины аij называются коэффициентами прямых материальных затрат и рассчитываются следующим образом:
Определение 1. Коэффициент прямых материальных затрат показывает, какое количество продукции i-й отрасли необходимо, если учитывать только прямые затраты, для производства единицы продукции j-й отрасли.
С учетом формулы (4) систему уравнений баланса (2) можно переписать в виде
Если ввести в рассмотрение матрицу коэффициентов прямых материальных затрат вектор-столбец валовой продукции X и вектор-столбец конечной продукции У:
то система уравнений (5) в матричной форме примет вид
Система уравнений (5), или в матричной форме (6), называется экономико-математической моделью межотраслевого баланса (моделью Леонтьева, моделью «затраты.— выпуск»). С помощью этой модели можно выполнять три варианта расчетов:
• Задав в модели величины валовой продукции каждой отрасли (Xi), можно определить объемы конечной продукции каждой отрасли (Yt):
• Задав величины конечной продукции всех отраслей (Yj), можно определить величины валовой продукции каждой отрасли (Xi):
• Для ряда отраслей задав величины валовой продукции, а для всех остальных отраслей задав объемы конечной продукции, можно найти величины конечной продукции первых отраслей и объемы валовой продукции вторых, в этом варианте расчета удобнее пользоваться не матричной формой модели (6), а системой линейных уравнений (5). В формулах (7) и (8) Е обозначает единичную матрицу n-го порядка, а (Е - А)-1 обозначает матрицу, обратную к матрице (Е -А). Если определитель матрицы (Е - А) не равен нулю, т.е. эта матрица невырожденная, то обратная к ней матрица существует. Обозначим эту обратную матрицу через В(Е- А)-1, тогда систему уравнений в матричной форме (8) можно записать в виде
Элементы матрицы В будем обозначать через , тогда из матричного уравнения (8) для любой i-й отрасли можно получить следующее соотношение:
Из
соотношений (9) следует, что валовая
продукция выступает как
Определение 2. Коэффициент полных материальных затрат Ь^ показывает, какое количество продукции i-й отрасли нужно произвести, чтобы с учетом прямых и косвенных затрат этой продукции получить единицу конечной продукции j-й отрасли.
Коэффициенты полных материальных затрат можно применять, когда необходимо определить, как скажется на валовом выпуске некоторой отрасли предполагаемое изменение объемов конечной продукции всех отраслей:
где и — изменения (приросты) величин валовой и конечной продукции соответственно.
Переходя к анализу модели межотраслевого баланса, необходимо прежде всего рассмотреть основные свойства матрицы коэффициентов прямых материальных затрат А. Коэффициенты прямых затрат по определению являются неотрицательными, следовательно, матрица А в целом может быть названа неотрицательной: . Так как процесс воспроизводства нельзя было бы осуществлять, если бы для собственного воспроизводства в отрасли затрачивалось большее количество продукта, чем создавалось, то очевидно, что диагональные элементы матрицы А меньше единицы: .
Система уравнений межотраслевого баланса является отражением реальных экономических процессов, в которых содержательный смысл могут иметь лишь неотрицательные значения валовых выпусков; таким образом, вектор валовой продукции состоит из неотрицательных компонентов и называется неотрицательным: . Встает вопрос, при каких условиях экономическая система способна обеспечить положительный конечный выпуск по всем отраслям. Ответ на этот вопрос связан с понятием продуктивности матрицы коэффициентов прямых материальных затрат.
Будем называть неотрицательную матрицу А продуктивной, если существует такой неотрицательный вектор , что
Очевидно, что условие (11) означает существование положительного вектора конечной продукции Y > 0 для модели межотраслевого баланса (6).
Для того чтобы матрица коэффициентов прямых материальных затрат А была продуктивной, необходимо и достаточно чтобы выполнялось одно из перечисленных ниже условий:
1) матрица (Е - А) неотрицательно обратима, т.е. существует обратная матрица ;
2) матричный ряд сходится, причем его сумма равна обратной матрице (Е - А)-1;
3) наибольшее по модулю собственное значение матрицы А, то есть решение характеристического уравнения
строго меньше единицы;
4)
все главные миноры матрицы
(Е - А), т.е. определители матриц,
образованные элементами
Более простым, но только достаточным признаком продуктивности матрицы А является ограничение на величину ее нормы, т.е. на величину наибольшей из сумм элементов матрицы А в каждом столбце. Если норма матрицы А строго меньше единицы, то эта матрица продуктивна; повторим, что данное условие является только достаточным, и матрица А может оказаться продуктивной и в случае, когда ее норма больше единицы.
Наибольший по модулю корень характеристического уравнения, приведенного в условии 3) продуктивности матрицы А (обозначим его через Я.*), может служить оценкой общего уровня коэффициентов прямых материальных затрат, а следовательно, величина 1-Я.* характеризует остаток после затрат, т.е. продуктивность. Чем больше 1-Я.*, тем больше возможности достижения других целей, кроме текущего производственного потребления. Другими словами, чем выше общий уровень коэффициентов матрицы А, тем больше наибольшее по модулю собственное значение Я.* и ниже уровень продуктивности, и наоборот, чем ниже общий уровень коэффициентов матрицы А, тем меньше наибольшее по модулю собственное значение и выше продуктивность.
Перейдем
к анализу матрицы
Дадим другое определение коэффициента полных материальных затрат исходя из того, что кроме прямых затрат существуют косвенные затраты той или иной продукции при производстве продукции данной отрасли. Рассмотрим в качестве примера формирование затрат электроэнергии на выпуск стального проката, при этом ограничимся технологической цепочкой «руда-чугун-сталь-прокат». Затраты электроэнергии при получении проката из стали будут называться прямыми затратами, те же затраты при получении стали из чугуна будут называться косвенными затратами 1-го порядка, а затраты электроэнергии при получении чугуна из руды будут называться косвенными затратами электроэнергии на выпуск стального проката 2-го порядка и т. д. В связи со сказанным выше имеет место следующее определение.
Определение 3. Коэффициентом полных материальных затрат называется сумма прямых затрат и косвенных затрат продукции i-й отрасли для производства единицы продукции j-й отрасли через все промежуточные продукты на всех предшествующих стадиях производства. Если коэффициент косвенных материальных затрат k-го порядка обозначить через то имеет место формула
а если ввести в рассмотрение матрицу коэффициентов полных материальных затрат и матрицы коэффициентов косвенных материальных затрат различных порядков , то поэлементную формулу (12) можно записать в более общем матричном виде:
Исходя из содержательного смысла коэффициентов косвенных материальных затрат можно записать ряд матричных соотношений:
с использованием которых матричная формула (13) может быть переписана в следующем виде:
Если матрица коэффициентов прямых материальных затрат А является продуктивной, то из условия 2) продуктивности существует матрица , являющаяся суммой сходящегося матричного ряда:
Из сопоставления соотношений (14) и (15) устанавливается следующая связь между двумя матрицами коэффициентов полных материальных затрат:
или, в поэлементной записи:
Данная связь определяет экономический смысл различия между коэффициентами матриц В и С: в отличие от коэффициентов матрицы С, учитывающих только затраты на производство продукции, коэффициенты матрицы В включают в себя кроме затрат также саму единицу конечной продукции, которая выходит за сферу производства.
Перейдем теперь к вычислительным аспектам решения задач на основе модели межотраслевого баланса. Основной объем расчетов по этой модели связан с вычислением матрицы коэффициентов полных материальных затрат В. Если матрица коэффициентов прямых материальных затрат А задана и является продуктивной, то матрицу В можно находить либо по формулам обращения матриц, рассматриваемым в курсе матричной алгебры, либо приближенным способом, используя разложение в матричный ряд (15).
Рассмотрим первый способ нахождения матрицы В. Находят матрицу (Е - А), а затем, применяя один из прямых методов обращения невырожденных матриц, вычисляют матрицу . Одним из наиболее употребительных методов обращения матриц является метод Жордана. Часто применяется также метод, основанный на применении формулы матричной алгебры