Автор работы: Пользователь скрыл имя, 03 Ноября 2010 в 18:54, Не определен
Пищевые добавки — это природные, идентичные природным или синтетические химические соединения, вводимые в продукты питания с целью придания им заданных качественных показателей, ускорения технологического процесса их получения, а также увеличения сроков годности.
Эмульгатор (или смесь эмульгаторов) ускоряет образование и стабилизирует тот тип эмульсии, в дисперсионной среде которой он лучше растворим. Например, маргарин представляет собой эмульсию типа «вода в масле», поэтому для его получения применяют эмульгаторы с величиной ГЛБ 3...6. Майонез представляет собой эмульсию «масло в воде», и для него используют эмульгаторы, имеющие ГЛБ 8... 18.
В качестве первых пищевых эмульгаторов использовались натуральные вещества. Типичными и старейшими эмульгаторами являются белок куриного яйца, природный лецитин, сапонины (например, отвар мыльного корня). Некоторые из них сохранили свою популярность и сегодня. Однако более широко в промышленности используются синтетические эмульгаторы, или продукты химической модификации природных веществ, промышленное производство которых начало развиваться в 20-е годы XX в. Целью химической модификации натуральных эмульгаторов является изменение их гидрофильно-липофильного баланса, например, ГЛБ лецитинов можно менять от 2 до 10. Соответственно меняется и их поведение в пищевых системах. Поскольку ГЛБ является величиной аддитивной, смешиванием нескольких эмульгаторов можно получать эмульгирующие системы, поведение которых сильно отличается от поведения компонентов.
Наиболее
популярными пищевыми эмульгаторами являются
моно- и диглицериды жирных кислот (Е471),
эфиры глицерина, жирных и др. кислот (Е472),
лецитины, фосфатиды (Е322), аммонийные соли
фосфатидиловой кислоты (Е442), полисорбаты,
эфиры сорбитана, эфиры полиглицерина
и взаимоэтерифицированных рициноловых
кислот (Е476), стеароиллактаты натрия (
Г 481), стеароиллактаты кальция (Е482). Величины
их ГЛБ представлены в табл. 3.1.
3.2.
Загустители и гелеобразователи
Загустители — вещества, увеличивающие вязкость пищевых продуктов, то есть загущающие их. Гелеобразователями (желеобразователями) называются вещества, способные в определённых условиях образовывать желе (гели) — структурированные дисперсные системы. Загустители и гелеобразователи позволяют получать пищевые продукты с нужной консистенцией, улучшают и сохраняют структуру продуктов, оказывая при этом положительное влияние на вкусовое восприятие. Благодаря способности связывать воду загустители и гелеобразователи стабилизируют дисперсные системы: суспензии, эмульсии, пены. Они почти всегда одновременно выполняют другие технологические функции: стабилизаторов и влагоудерживающих агентов. Кроме того, они относятся к пищевым волокнам.
Чёткое
разграничение между гелеобразователями
и загустителями не всегда возможно. Есть
вещества, обладающие в разной степени
свойствами и гелеобразователя, и загустителя.
Некоторые загустители в определённых
условиях могут образовывать прочные
эластичные гели.
3.2.1. Общие сведения
Загустители и гелеобразователи по химической природе представляют собой линейные или разветвлённые полимерные цепи с гидрофильными группами, которые вступают в физическое взаимодействие с имеющейся в продукте водой. За исключением микробных полисахаридов — ксантана Е415 и геллановой камеди Е418, а также желатина (животный белок) — гелеобразователи и загустители являются углеводами (полисахаридами) растительного происхождения, растительными гидроколлоидами. Их получают из наземных растений или водорослей. Из бурых водорослей получают альгиновую кислоту Е400 и её соли Е 401...404. Наиболее популярные гелеобразователи — агар (агар-агар) Е406 и каррагинан (в том числе фурцеллеран) Е407 — получают из красных морских водорослей, а пектин Е440 — чаще всего из яблок и цитрусовых. Полисахариды, полученные из растений, подразделяют на защитные коллоиды, выделяемые растением при повреждениях (экссудаты, смолы), и муку семян (резервные полисахариды растений). К смолам относятся арабиногалактан Е 409, трагакант Е 413, гуммиарабик Е414, камедь карайи Е416, камедь гхатти Е419; к резервным полисахаридам — мука семян рожкового дерева Е410, овсяная камедь Е 411, гуаровая камедь Е 412 и камедь тары Е 417.
По химическому строению гидроколлоиды подразделяют на три группы: кислые полисахариды с остатками уроновой кислоты, кислые полисахариды с остатками серной кислоты и нейтральные полисахариды. В качестве загустителей применяются кислые гидроколлоиды с остатками уроновой кислоты (например, трагакант Е413 и гуммиарабик Е414), а также нейтральные соединения (например, камедь бобов рожкового дерева Е 410 и гуар Е 412). Кислые полисахариды с остатками серной кислоты применяются в качестве гелеобразователей (например, агар Е406 и каррагинан Е407).
Эффективность действия гидроколлоидов определяется не только структурными особенностями их молекул (длиной цепи, степенью разветвления, природой мономерных звеньев и функциональных групп и их расположением в молекуле, наличием гликозидных связей), но и составом пищевого продукта, способом его получения и условиями хранения. На растворение и диспергирование гидроколлоидов влияют размер и форма их частиц, удельная поверхность, гранулометрический состав. Большое значение имеет способ приготовления раствора (дисперсии): интенсивность и время перемешивания, температура, значение рН, присутствие электролитов, минеральных веществ и гидратируемых веществ (например, сахара), возможность образования комплексов с другими имеющимися в системе соединениями, процессы распада, вызываемые ферментами или микроорганизмами. Есть загустители, которые могут образовывать ассоциаты с другими высокомолекулярными компонентами пищевого продукта, что вызывает заметное возрастание вязкости.
Поведение нейтральных полисахаридов, в отличие от полиэлектролитов, практически не зависит от изменения рН среды и концентрации соли.
Наиболее часто встречается следующий механизм загущения. Молекулы загустителя свёрнуты в клубки. Попадая в воду или в среду, содержащую свободную воду (например, в напиток или в смесь для мороженого), клубок молекулы загустителя благодаря сольватации раскручивается, подвижность молекул воды ограничивается, а вязкость раствора возрастает (табл. 3.2).
Свойства загустителей, особенно нейтральных полисахаридов, можно менять путём физической (например, термической) обработки или путём химической модификации (например, введением в молекулу нейтральных или ионных заместителей). Путём химической или физической модификации крахмала можно добиться: понижения или повышения температуры его клейстеризации; понижения или повышения вязкости клейстера; повышения растворимости в холодной воде; появления эмульгирующих свойств; снижения склонности к ретро-градации; устойчивости к синерезису, кислотам, высоким температурам, циклам оттаивания-замораживания. При этом получают разные виды модифицированных крахмалов (Е1400... 1405, Е1410...1414, Е1420...1423, Е1440, Е1442, Е1443, Е1450, Е1451). К модифицированным полисахаридам относят сложные эфиры целлюлозы Е 461...467.
Гели (желе) представляют собой дисперсные системы, по крайней мере двухкомпонентные, состоящие из дисперсной фазы, распределённой в дисперсионной среде. Дисперсионной средой является жидкость. В пищевых системах это обычно вода, и поэтому гель носит название гидрогеля. Дисперсной фазой является гелеобразователь, полимерные цепи которого образуют поперечно сшитую сетку и не обладают той подвижностью, которая есть у молекул загустителя в высоковязких растворах. Вода в такой системе физически связана и тоже теряет подвижность. Следствием этого является изменение консистенции пищевого продукта. Структура и прочность пищевых гелей, полученных с использованием разных гелеобразователей, могут сильно различаться.
Гель практически является закреплённой формой коллоидного раствора (золя). Для превращения золя в гель необходимо, чтобы между распределёнными в жидкости молекулами начали действовать силы, вызывающие межмолекулярную сшивку. Этого можно добиться разными способами: снижением количества растворителя за счёт испарения; понижением растворимости распределённого вещества за счёт химического взаимодействия; добавкой веществ, способствующих образованию связей и поперечной сшивке; изменением температуры и регулированием величины рН.
Начало
желирования сопровождается замедлением
броуновского движения частиц дисперсной
фазы (возрастанием вязкости), их гидратацией
и образованием полимерной сетки. Способность
полимеров образовывать полимерную сетку
зависит от длины и числа линейно ориентированных
участков их молекул, а также наличия боковых
цепей, создающих стерические затруднения
при межмолекулярном взаимодействии.
Механизмы образования гелей могут сильно
различаться; в настоящее время выделяют
три основных механизма: сахарокислотный
(высокоэтерифицированные пектины), модель
«яичной упаковки» (например, низкоэтерифицированные
пектины) и модель двойных спиралей (например,
агар).
3.2.2. Токсикологическая безопасность и хранение
Все загустители и гелеобразователи, разрешённые для применения в пищевых продуктах, встречаются в природе. Пектины и желатин являются природными компонентами пищевых продуктов, регулярно употребляемых в пищу: овощей, фруктов, мясных продуктов.
Почти все загустители и гелеобразователи, за исключением крахмалов и желатина, являются растворимыми балластными веществами. Они не всасываются и не перевариваются. В количестве 4...5 г на один приём для человека они, как правило, являются лёгким слабительным. Каррагинаны и пектины могут уменьшать степень и скорость всасывания других составляющих пищевых продуктов (например, холестерина). Пектин, особенно низкометоксилированный, обладает высокой комплексообразующей способностью, благодаря чему способствует выведению из организма тяжёлых металлов и радионуклидов. Рекомендуемое суточное потребление пектиновых веществ в рационе взрослого здорового человека составляет 5...6 г.
Нативный крахмал является питательным веществом, он полностью усваивается после растворения; нерастворённый крахмал практически не усваивается. Модифицированные крахмалы расщепляются и усваиваются, как нативный крахмал, некоторые быстрее. Крахмалы, обработанные эпихлоргидрином, считаются непригодными для пищевого производства, поскольку контакт с токсичным и канцерогенным эпихлоргидрином вызывает у токсикологов опасения.
Желатин является съедобным белком, поэтому может считаться пищевым продуктом. Из-за отсутствия эссенциальной аминокислоты триптофана собственная пищевая ценность этого белка низкая, однако желатин может увеличивать пищевую ценность других белков (например, белков мяса с 92 до 99 %).
В соответствии с рекомендациями ТЕСКА, ДСП подавляющего большинства загустителей и гелеобразователей не ограничено (есть ограничение ДСП для полуочищенного каррагинана — 20мг/кг веса тела в день). В соответствии с «Гигиеническими требованиями по применению пищевых добавок» СанПиН 2.3.2.1293-03 загустители и гелеобразователи, за исключением пропиленгликольальгината, применяют в пищевых продуктах согласно ТИ.
Срок годности сухих загустителей и гелеобразователей от полугода до двух лет. Сухие порошки загустителей и гелеобразователей могут храниться и дольше.
Они
обязательно должны храниться в сухом
месте и быть защищены от прямых солнечных
лучей и длительного воздействия тепла.
Ёмкости, в которых хранят добавку, обязательно
следует плотно закрывать после отбора
каждой порции. Все гидроколлоиды являются
благоприятной средой для развития микроорганизмов,
поэтому при работе с ними следует особенно
тщательно соблюдать правила производственной
санитарии и гигиены.
4. ВЕЩЕСТВА, СПОСОБСТВУЮЩИЕ УВЕЛИЧЕНИЮ СРОКОВ ГОДНОСТИ ПИЩЕВЫХ ПРОДУКТОВ
Срок годности пищевого продукта определяют двумя комплексами показателей качества:
Когда хотя бы один показатель второй группы достигает предельного значения, срок годности продукта заканчивается, и он становится непригодным к употреблению в пищу, то есть теряет свою потребительскую стоимость. Чтобы увеличить срок годности пищевого продукта, необходимо стабилизировать первую группу показателей и замедлить изменение второй. Для решения обеих задач необходим достаточно широкий спектр пищевых добавок.
Известно, что влажность среды сильно влияет на развитие микроорганизмов. В последних содержится до 75...80% воды, и все питательные вещества для их жизнедеятельности поступают в клетку в виде раствора в воде.
Микроорганизмы
могут развиваться в средах, в которых
содержание воды не опускается ниже определенного
уровня. С понижением влажности интенсивность
размножения микроорганизмов уменьшается
и при достижении определенного содержания
влаги прекращается совсем. Однако, для
развития микроорганизмов имеет значение
не абсолютная величина влажности, а доступность
содержащейся в субстрате воды для развития
микроорганизмов, которую в настоящее
время называют «активность воды», которая
влияет и на интенсивность процессов окисления.