Модели стационарных и нестационарных временных рядов, их идентификация

Автор работы: Пользователь скрыл имя, 01 Мая 2014 в 21:23, контрольная работа

Описание работы

В статистике, обработке сигналов и многих других областях под временным рядом понимаются последовательно измеренные через некоторые (зачастую равные) промежутки времени данные. Анализ временных рядов объединяет методы изучения временных рядов, как пытающиеся понять природу точек данных (откуда они взялись? что их породило?), так и пытающиеся построить прогноз. Прогнозирование временных рядов заключается в построении модели для предсказания будущих событий основываясь на известных событий прошлого, предсказания будущих данных до того как они будут измерены. Типичный пример — предсказание цены открытия биржи основываясь на предыдущей её деятельности.

Файлы: 1 файл

Контрольная по эконометрике.doc

— 171.50 Кб (Скачать файл)

В-третьих, составление эконометрической модели типа (1) - это отнюдь не рутинная операция. Например, запаздывание именно на 4 месяца в связанном с эмиссией денег слагаемом b S (t - 4) - это результат достаточно изощренной предварительной статистической обработки. Далее, требует изучения вопрос зависимости или независимости величин S (t - 4) и I(t). От решения этого вопроса зависит, как выше уже отмечалось, конкретная реализация процедуры метода наименьших квадратов.

С другой стороны, в модели (1) всего 3 неизвестных параметра, и постановку метода наименьших квадратов выписать нетрудно:

Проблема идентифицируемости. Представим теперь модель типа (1) с большим числом эндогенных и экзогенных переменных, с лагами и сложной внутренней структурой. Вообще говоря, ниоткуда не следует, что существует хотя бы одно решение у такой системы. Поэтому возникает не одна, а две проблемы. Есть ли хоть одно решение (проблема идентифицируемости)? Если да, то как найти наилучшее решение из возможных? (Это - проблема статистической оценки параметров.)

И первая, и вторая задача достаточно сложны. Для решения обоих задач разработано множество методов, обычно достаточно сложных (см. список литературы), лишь часть из которых имеет научное обоснование. В частности, достаточно часто пользуются статистическими оценками, не являющимися состоятельными (строго говоря, их даже нельзя назвать оценками).

Коротко опишем некоторые распространенные приемы при работе с системами линейных эконометрических уравнений.

Система линейных одновременных эконометрических уравнений. Чисто формально можно все переменные выразить через переменные, зависящие только от текущего момента времени. Например, в случае уравнения (1) достаточно положить

H(t) = I(t- 1), G(t) = S (t - 4).

Тогда уравнение пример вид

I(t) = сH(t) + a + b G(t) + e. (2)

Отметим здесь же возможность использования регрессионных моделей с переменной структурой путем введения фиктивных переменных. Эти переменные при одних значениях времени (скажем, начальных) принимают заметные значения, а при других - сходят на нет (становятся фактически равными 0). В результате формально (математически) одна и та же модель описывает совсем разные зависимости.

Адаптивные модели прогнозирования

Процедуры оценки параметров и прогнозирования предполагают, что математическая модель процесса известна. В реальных данных часто нет отчетливо выраженных регулярных составляющих. Отдельные наблюдения содержат значительную ошибку, тогда как вы хотите не только выделить регулярные компоненты, но также построить прогноз. Методология АРПСС позволяет это сделать. Данный метод чрезвычайно популярен во многих приложениях, и практика подтвердила его мощность и гибкость. Однако из-за мощности и гибкости, АРПСС - сложный метод. Его не так просто использовать, и требуется большая практика, чтобы овладеть им. Хотя часто он дает удовлетворительные результаты, они зависят от квалификации пользователя. Следующие разделы познакомят Вас с его основными идеями.

Два основных процесса

Процесс авторегрессии. Большинство временных рядов содержат элементы, которые последовательно зависят друг от друга. Такую зависимость можно выразить следующим уравнением:

где:

- константа (свободный член),

, , - параметры авторегрессии.

Вы видите, что каждое наблюдение есть сумма случайной компоненты (случайное воздействие, ) и линейной комбинации предыдущих наблюдений. Такой ряд называется авторегрессией.

Процесс скользящего среднего. В отличие от процесса авторегрессии, в процессе скользящего среднего каждый элемент ряда подвержен суммарному воздействию предыдущих ошибок. В общем виде это можно записать следующим образом:

где:

- константа,

, , - параметры скользящего среднего.

Другими словами, текущее наблюдение ряда представляет собой сумму случайной компоненты в данный момент и линейной комбинации случайных воздействий в предыдущие моменты времени.

Модель авторегрессии и скользящего среднего. Общая модель, предложенная Боксом и Дженкинсом, включает как параметры авторегрессии, так и параметры скользящего среднего. Именно, имеется три типа параметров модели: параметры авторегрессии (p), порядок разности (d), параметры скользящего среднего (q). В обозначениях Бокса и Дженкинса модель записывается как АРПСС (p, d, q). Например, модель (0, 1, 2) содержит 0 (нуль) параметров авторегрессии (p) и 2 параметра скользящего среднего (q), которые вычисляются для ряда после взятия разности с лагом 1.

Идентификация. Как отмечено ранее, для модели АРПСС необходимо, чтобы ряд был стационарным, это означает, что его среднее постоянно, а выборочные дисперсия и автокорреляция не меняются во времени. Поэтому обычно необходимо брать разности ряда до тех пор, пока он не станет стационарным (часто также применяют логарифмическое преобразование для стабилизации дисперсии). Число разностей, которые были взяты, чтобы достичь стационарности, определяются параметром d. Для того чтобы определить необходимый порядок разности, нужно исследовать график ряда и автокоррелограмму. Сильные изменения уровня (сильные скачки вверх или вниз) обычно требуют взятия несезонной разности первого порядка (лаг=1). Сильные изменения наклона требуют взятия разности второго порядка. Сезонная составляющая требует взятия соответствующей сезонной разности. Если имеется медленное убывание выборочных коэффициентов автокорреляции в зависимости от лага, обычно берут разность первого порядка. Однако следует помнить, что для некоторых временных рядов нужно брать разности небольшого порядка или вовсе не брать их. Заметим, что чрезмерное количество взятых разностей приводит к менее стабильным оценкам коэффициентов.

На этом этапе (который обычно называют идентификацией порядка модели) вы также должны решить, как много параметров авторегрессии (p) и скользящего среднего (q) должно присутствовать в эффективной и экономной модели процесса. (Экономность модели означает, что в ней имеется наименьшее число параметров и наибольшее число степеней свободы среди всех моделей, которые подгоняются к данным). На практике очень редко бывает, что число параметров p или q больше 2.

Оценивание и прогноз. Следующий, после идентификации, шаг (Оценивание) состоит в оценивании параметров модели (для чего используются процедуры минимизации функции потерь). Полученные оценки параметров используются на последнем этапе (Прогноз) для того, чтобы вычислить новые значения ряда и построить доверительный интервал для прогноза. Процесс оценивания проводится по преобразованным данным (подвергнутым применению разностного оператора). До построения прогноза нужно выполнить обратную операцию (интегрировать данные). Таким образом, прогноз методологии будет сравниваться с соответствующими исходными данными. На интегрирование данных указывает буква П в общем названии модели (АРПСС = Авторегрессионное Проинтегрированное Скользящее Среднее).

Константа в моделях АРПСС. Дополнительно модели АРПСС могут содержать константу, интерпретация которой зависит от подгоняемой модели. Именно,

1) Если в модели нет параметров  авторегрессии, то константа m есть  среднее значение ряда,

2) Если параметры авторегрессии  имеются, то константа представляет  собой свободный член.

Если бралась разность ряда, то константа представляет собой среднее или свободный член преобразованного ряда. Например, если бралась первая разность (разность первого порядка), а параметров авторегрессии в модели нет, то константа представляет собой среднее значение преобразованного ряда и, следовательно, коэффициент наклона линейного тренда исходного ряда.

Выбор модели

Число оцениваемых параметров. Конечно, до того, как начать оценивание, Вам необходимо решить, какой тип модели будет подбираться к данным, и какое количество параметров присутствует в модели, иными словами, нужно идентифицировать модель АРПСС. Основными инструментами идентификации порядка модели являются графики, автокорреляционная функция (АКФ), частная автокорреляционная функция (ЧАКФ). Это решение не является простым и требуется основательно поэкспериментировать с альтернативными моделями. Тем не менее, большинство встречающихся на практике временных рядов можно с достаточной степенью точности аппроксимировать одной из 5 основных моделей, которые можно идентифицировать по виду автокорреляционной (АКФ) и частной автокорреляционной функции (ЧАКФ). Ниже дается список этих моделей. Отметим, что число параметров каждого вида невелико (меньше 2), поэтому нетрудно проверить альтернативные модели.

1. Один параметр (p): АКФ - экспоненциально убывает; ЧАКФ - имеет резко выделяющееся значение для лага 1, нет корреляций на других лагах.

2. Два параметра авторегрессии (p): АКФ имеет форму синусоиды или экспоненциально убывает; ЧАКФ имеет резко выделяющиеся значения на лагах 1, 2, нет корреляций на других лагах.

3. Один параметр скользящего среднего (q): АКФ имеет резко выделяющееся значение на лаге 1, нет корреляций на других лагах. ЧАКФ экспоненциально убывает.

4. Два параметра скользящего среднего (q): АКФ имеет резко выделяющиеся значения на лагах 1, 2, нет корреляций на других лагах. ЧАКФ имеет форму синусоиды или экспоненциально убывает.

5. Один параметр авторегрессии (p) и один параметр скользящего среднего (q): АКФ экспоненциально убывает с лага 1; ЧАКФ - экспоненциально убывает с лага 1.

Сезонные модели. Мультипликативная сезонная АРПСС представляет естественное развитие и обобщение обычной модели АРПСС на ряды, в которых имеется периодическая сезонная компонента. В дополнении к несезонным параметрам, в модель вводятся сезонные параметры для определенного лага (устанавливаемого на этапе идентификации порядка модели). Аналогично параметрам простой модели АРПСС, эти параметры называются: сезонная авторегрессия (ps), сезонная разность (ds) и сезонное скользящее среднее (qs). Таким образом, полная сезонная АРПСС может быть записана как АРПСС (p,d,q)(ps,ds,qs). Например, модель (0,1,2)(0,1,1) включает 0 регулярных параметров авторегрессии, 2 регулярных параметра скользящего среднего и 1 параметр сезонного скользящего среднего. Эти параметры вычисляются для рядов, получаемых после взятия одной разности с лагом 1 и далее сезонной разности. Сезонный лаг, используемый для сезонных параметров, определяется на этапе идентификации порядка модели.

Общие рекомендации относительно выбора обычных параметров (с помощью АКФ и ЧАКФ) полностью применимы к сезонным моделям. Основное отличие состоит в том, что в сезонных рядах АКФ и ЧАКФ имеют существенные значения на лагах, кратных сезонному лагу (в дополнении к характерному поведению этих функций, описывающих регулярную (несезонную) компоненту АРПСС).

4. Решение контрольной задачи (Вариант 30).

Условие контрольной задачи

Имеются данные товарооборота за 10 месяцев текущего года, представленные в таблице 1.

Таблиц 1 -  Исходные данные контрольной задачи за текущий год

Х (месяцы)

У, (тыс. руб.)

1

120

2

123

3

130

4

135

5

170

6

139

7

150

8

162

9

175

10

178


 

Необходимо:

1. С помощью сервиса корреляционно-регрессионного анализа необходимо найти:

  • уравнение регрессии;
  • коэффициент регрессии;
  • линейный коэффициент корреляции с проверкой его значимости;
  • параметры уравнения линейной регрессии;
  • тесноту связи с помощью показателей корреляции и детерминации;
  • статическую надежность регрессионного моделирования с помощью F- критерия Фишера и с помощью t-критерия Стьюдента;
  • доверительный интервал прогноза на 11 месяц для уровня значимости α;

2. Проверить наличие гетероскедастичности и автокорреляции остатков.

Решение:

Выборочные средние:

xср = ∑xi / n = 55 / 10 = 5.5;

yср = ∑yi / n = 1482 / 10 = 148.2;

xyср = ∑xiyi / n = 8681 / 10 = 868.1

Выборочные дисперсии:

S2(x) = ∑x2i / n - x2ср = 385 / 10 - 5.52 = 8.25

S2(y) = ∑y2i / n - y2ср = 223928 / 10 - 148.22 = 429.56

Коэффициент корреляции rxy = 0.8903

Линейное уравнение регрессии имеет вид y = 6.42 x + 112.87

Коэффициент детерминации R2 = 0.7926

Поле корреляции

Корреляционный анализ.

Уравнение парной регрессии.

На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер.

Линейное уравнение регрессии имеет вид y = bx + a + ε

Система нормальных уравнений.

a•n + b∑x = ∑y

a∑x + b∑x2 = ∑y•x

Для наших данных система уравнений имеет вид

10a + 55 b = 1482

55 a + 385 b  = 8681

Из первого уравнения выражаем а и подставим во второе уравнение:

Получаем эмпирические коэффициенты регрессии: b = 6.42, a = 112.87

Уравнение регрессии (эмпирическое уравнение регрессии):

y = 6.42 x + 112.87

Эмпирические коэффициенты регрессии a и b являются лишь оценками теоретических коэффициентов βi, а само уравнение отражает лишь общую тенденцию в поведении рассматриваемых переменных.

1. Параметры уравнения регрессии.

Выборочные средние.

 

 

 

Выборочные дисперсии:

 

 

Среднеквадратическое отклонение

 

 

1.1. Коэффициент корреляции

Информация о работе Модели стационарных и нестационарных временных рядов, их идентификация