Автор работы: Пользователь скрыл имя, 01 Мая 2014 в 21:23, контрольная работа
В статистике, обработке сигналов и многих других областях под временным рядом понимаются последовательно измеренные через некоторые (зачастую равные) промежутки времени данные. Анализ временных рядов объединяет методы изучения временных рядов, как пытающиеся понять природу точек данных (откуда они взялись? что их породило?), так и пытающиеся построить прогноз. Прогнозирование временных рядов заключается в построении модели для предсказания будущих событий основываясь на известных событий прошлого, предсказания будущих данных до того как они будут измерены. Типичный пример — предсказание цены открытия биржи основываясь на предыдущей её деятельности.
Оглавление
В статистике, обработке сигналов и многих других областях под временным рядом понимаются последовательно измеренные через некоторые (зачастую равные) промежутки времени данные. Анализ временных рядов объединяет методы изучения временных рядов, как пытающиеся понять природу точек данных (откуда они взялись? что их породило?), так и пытающиеся построить прогноз. Прогнозирование временных рядов заключается в построении модели для предсказания будущих событий основываясь на известных событий прошлого, предсказания будущих данных до того как они будут измерены. Типичный пример — предсказание цены открытия биржи основываясь на предыдущей её деятельности.
Понятие анализ временных рядов используется для того, чтобы отделить эту задачу от в первую очередь от более простых задач анализа данных (когда нет естественного порядка поступления наблюдений) и, во-вторых, от анализа пространственных данных, в котором наблюдения зачастую связаны с географическим положением. Модель временного ряда в общем смысле отражает идею, что близкие во времени наблюдения будут теснее связаны, чем удалённые. Кроме того, модели временных рядов зачастую используют однонаправленный порядок по времени в том смысле, что значения в ряду выражаются в некотором виде через прошлые значения, а не через последующие.
Методы анализа временных рядов зачастую делят на два класса: анализ в частотной области и анализ во временной области. Первый основывается на спектральном анализе и с недавних пор вейвлетном анализе, и может рассматриваться в качестве не использующих модели методов анализа, хорошо подходящих для исследований на этапе разведки. Методы анализа во временной области также имеют безмодельное подмножество, состоящее из кросс-корреляционного анализа и автокорреляционного анализа, но именно здесь появляются частично и полностью определённые модели временных рядов.
Существует несколько методов анализа данных, применимых для временных рядов.
Существенное развитие получил статистический анализ временных рядов. Г. Бокс и Г. Дженкинс создали ARIMA-модсль и 1970 г., а К. Симе и другие ученые — VAR-модели, ставшие популярными в начале 80-х гг. Вершиной этой стадии развития явился метод коинтеграции, развитый С. Йохансеном и др. (1990 г.).
В настоящее время эконометрика располагает огромным разнообразием типов моделей - от больших макроэкономических моделей, включающих несколько сот, а иногда и тысяч уравнений, до малых коинтеграционных моделей, предназначенных для решения специфических проблем.
Как показано Боксом и Дженкинсом, модели временных рядов могут иметь различные формы и представлять различные стохастические процессы. При моделировании изменений уровня процесса можно выделить три широких класса имеющих практическую ценность: авторегрессионые модели, интегральные модели и модели скользящего среднего. Эти три класса линейно зависят от предшествующих данных. На их основе построены модели авторегрессионного скользящего среднего (Autoregressive Moving Average, ARMA) и авторегрессионного интегрированного скользящего среднего (Autoregressive Integrated Moving Average, ARIMA). Эти модели в свою очередь обобщает модель авторегрессионного дробноинтегрированного скользящего среднего (autoregressive fractionally integrated moving average, ARFIMA). Расширения моделей на случаи, когда данные представляются не скалярно, а векторно, называют моделями многомерных временных рядов. Для таких моделей в сокращённых названиях появляется буква «v» от слова «vector». Существуют расширения моделей на случай, когда исследуемый временной ряд является ведомым для некоторого «вынуждающего» ряда (который, однако, может не быть причиной возникновения исследуемого ряда). Отличие от многомерного ряда заключается в том, что вынуждающий ряд может быть детерминированным или управляться исследователем, проводящим эксперимент. Для таких моделей в сокращении появляется буква «x» от «exogenous» (экзогенный, вызываемый внешними причинами).
Нелинейная зависимость уровня ряда от предыдущих точек интересна, отчасти из-за возможности генерации хаотических временных рядов. Но главным всё же является то, что опытные исследования указывают на превосходство прогнозов, полученных от нелинейных моделей, над прогнозами линейных моделей.
Среди прочих типов нелинейных моделей временных рядов можно выделить модели, описывающие изменения диспресии ряда со временем (гетероскедатичность). Такиме модели называют моделями авторегрессионной условной гетероскедастичности (AutoRegressive Conditional Heteroscedasticity, ARCH). К инм относится большое количество моделей: GARCH, TARCH, EGARCH, FIGARCH, CGARCH и др. В этих моделях изменения дисперсии связывают с ближайшими предшествующими данными. Протевовесом такому подходу является представление локально изменчивой дисперсии, при котором дисперсия может быть смоделирована зависящей от отдельного менющегося со временем процесса, как в бистохастических моделях.
В последнее время знчительное внимание снискали исследования в области безмодельного анализа и методы, основанные на вейвлетных преобразованиях (например локально стационарные вейвлеты) в частности. Методы многомасштабного анализа разлагают заданный временной ряд на составные части, чтобы показать зависимость от времени с разным масштабом.
Пусть t = 0,±1,±2,±3,... Рассмотрим временной ряд X(t). Пусть сначала временной ряд принимает числовые значения. Это могут быть, например, цены на батон хлеба в соседнем магазине или курс обмена доллара на рубли в ближайшем обменном пункте. Обычно в поведении временного ряда выявляют две основные тенденции - тренд и периодические колебания.
При этом под трендом понимают зависимость от времени линейного, квадратичного или иного типа, которую выявляют тем или иным способом сглаживания (например, экспоненциального сглаживания) либо расчетным путем, в частности, с помощью метода наименьших квадратов. Другими словами, тренд - это очищенная от случайностей основная тенденция временного ряда.
Временной ряд обычно колеблется вокруг тренда, причем отклонения от тренда часто обнаруживают правильность. Часто это связано с естественной или назначенной периодичностью, например, сезонной или недельной, месячной или квартальной (например, в соответствии с графиками выплаты заплаты и уплаты налогов). Иногда наличие периодичности и тем более ее причины неясны, и задача эконометрика - выяснить, действительно ли имеется периодичность.
Характеристики временных рядов. Для более подробного изучения временных рядов используются вероятностно-статистические модели. При этом временной ряд X(t) рассматривается как случайный процесс (с дискретным временем) основными характеристиками являются математическое ожидание X(t), т.е.
α(t)=MX(t),
дисперсия X(t), т.е.
σ1(t)=DX(t)
и автокорреляционная функция временного ряда X(t)
т.е. функция двух переменных, равная коэффициенту корреляции между двумя значениями временного ряда X(t) и X(s).
В теоретических и прикладных исследованиях рассматривают широкий спектр моделей временных рядов. Выделим сначала стационарные модели. В них совместные функции распределения для любого числа моментов времени k, а потому и все перечисленные выше характеристики временного ряда не меняются со временем. В частности, математическое ожидание и дисперсия являются постоянными величинами, автокорреляционная функция зависит только от разности t-s. Временные ряды, не являющиеся стационарными, называются нестационарными.
Линейные регрессионные модели с гомоскедастичными и гетероскедастичными, независимыми и автокоррелированными остатками. Как видно из сказанного выше, основное - это "очистка" временного ряда от случайных отклонений, т.е. оценивание математического ожидания. В отличие от простейших моделей регрессионного анализа здесь естественным образом появляются более сложные модели. Например, дисперсия может зависеть от времени. Такие модели называют гетероскедастичными, а те, в которых нет зависимости от времени - гомоскедастичными. (Точнее говоря, эти термины могут относиться не только к переменной "время", но и к другим переменным.)
Далее предполагалось, что погрешности независимы между собой. В терминах это означало бы, что автокорреляционная функция должна быть вырожденной - равняться 1 при равенстве аргументов и 0 при их неравенстве. Ясно, что для реальных временных рядов так бывает отнюдь не всегда. Если естественный ход изменений наблюдаемого процесса является достаточно быстрым по сравнению с интервалом между последовательными наблюдениями, то можно ожидать "затухания" автокорреляции" и получения практически независимых остатков, в противном случае остатки будут автокоррелированы.
Идентификация моделей. Под идентификацией моделей обычно понимают выявление их структуры и оценивание параметров. Поскольку структура - это тоже параметр, хотя и нечисловой, то речь идет об одной из типовых задач эконометрики - оценивании параметров.
Проще всего задача оценивания решается для линейных (по параметрам) моделей с гомоскедастичными независимыми остатками. Восстановление зависимостей во временных рядах может быть проведено на основе методов наименьших квадратов и наименьших модулей, линейной (по параметрам) регрессии. На случай временных рядов переносятся результаты, связанные с оцениванием необходимого набора регрессоров, в частности, легко получить предельное геометрическое распределение оценки степени тригонометрического полинома.
Однако, на более общую ситуацию такого простого переноса сделать нельзя. Так, например, в случае временного ряда с гетероскедастичными и автокоррелированными остатками снова можно воспользоваться общим подходом метода наименьших квадратов, однако система уравнений метода наименьших квадратов и, естественно, ее решение будут иными. Формулы в терминах матричной алгебры будут отличаться. Поэтому рассматриваемый метод называется "обобщенный метод наименьших квадратов (ОМНК)".
Простейшая модель метода наименьших квадратов допускает весьма далекие обобщения, особенно в области системам одновременных эконометрических уравнений для временных рядов. Для понимания соответствующей теории и алгоритмов необходимо профессиональное владение матричной алгеброй. Поэтому мы отсылаем тех, кому это интересно, к литературе по системам эконометрических уравнений и непосредственно по временным рядам, в которой особенно много интересуются спектральной теорией, т.е. выделением сигнала из шума и разложением его на гармоники.
Пример модели авторегрессии. В качестве первоначального примера рассмотрим эконометрическую модель временного ряда, описывающего рост индекса потребительских цен (индекса инфляции). Пусть I(t) - рост цен в месяц t. Тогда по мнению некоторых экономистов естественно предположить, что
I(t) = сI(t- 1) + a + b S (t - 4) + e, (1)
где I(t- 1) - рост цен в предыдущий месяц (а с - некоторый коэффициент затухания, предполагающий, что при отсутствии внешний воздействий рост цен прекратится), a - константа (она соответствует линейному изменению величины I(t) со временем), b S (t - 4) - слагаемое, соответствующее влиянию эмиссии денег (т.е. увеличения объема денег в экономике страны, осуществленному Центральным Банком) в размере S (t - 4) и пропорциональное эмиссии с коэффициентом b, причем это влияние проявляется не сразу, а через 4 месяца; наконец, e - это неизбежная погрешность.
Модель (1), несмотря на свою простоту, демонстрирует многие характерные черты гораздо более сложных эконометрических моделей. Во-первых, обратим внимание на то, что некоторые переменные определяются (рассчитываются) внутри модели, как I(t). Их называют эндогенными (внутренними). Другие задаются извне (это экзогенные переменные). Иногда, как в теории управления, среди экзогенных переменных, выделяют управляемые переменные - те, с помощью которых менеджер может привести систему в нужное ему состояние.
Во-вторых, в соотношении (1) появляются переменные новых типов - с лагами, т.е. аргументы в переменных относятся не к текущему моменту времени, а к некоторым прошлым моментам.
Информация о работе Модели стационарных и нестационарных временных рядов, их идентификация