Автор работы: Пользователь скрыл имя, 16 Ноября 2010 в 00:30, Не определен
Введение
Глава 1. Теоретическая часть
1.1. Решение оптимизационной задачи линейного программирования
1.2. Симплекс-метод
1.3. Технология решения задач линейного программирования с помощью режима Поиска решений в среде EXCEL
Первая теорема двойственности
Вторая теорема двойственности
Теорема об оценках
1.5. Области допустимых решений для двойственных переменных
Общая задача ЛП
В этой задачи часть ограничений носит характер неравенств, а часть является уравнениями. Кроме того, не на все переменные наложено условие неотрицательности:
Здесь . Ясно, что стандартная задача получается как частный случай общей при ; каноническая — при .
Все три перечисленные задачи эквивалентны в том смысле, что каждую из них можно простыми преобразованиями привести к любой из двух остальных.
При изучении задач ЛП сложилась определенная терминалогия. Линейная форма , подлежащая максимизации (или минимизации) , называется целевой функцией. Вектор , удовлетворяющий всем ограничениям задачи ЛП, называется допустимым вектором, или планом. Задача ЛП, для которой существуют допустимые векторы, называется допустимой задачей. Допустимый вектор , доставляющий наибольшее значение целевой функции по сравнению с любым другим допустимым вектором , т.е. , называется решением задачи, или оптимальным планом. Максимальное значение целевой функции называется значением задачи.
Симплекс – метод – это алгебраический метод решения задач линейного программирования. В процессе вычислений производиться последовательный обход вершин многогранника решений (ОДР.) с проверкой в каждой вершине условий оптимальности. При этом каждый переход в смежную вершину сопровождается улучшением целевой функции.
Вычислительные процедуры симплекс - метода.
При графическом методе решения ЗЛП оптимальному решению соответствует всегда одна из угловых (экстремальных) точек пространства решений. Это результат положен в основу построения симплекс-метода. Симплекс-метод не обладает наглядностью геометрического представления пространства решений.
Симплекс-метод
реализует упорядоченный
Обозначим: – общее количество переменных в ЗЛП, представленной в канонической форме; - количество исходных переменных; - количество ограничений, - количество дополнительных переменных, тогда .
Каждая вершина многогранника решений имеет - ненулевых переменных и ( ) - нулевых переменных.
Ненулевые переменные называются базисными, нулевые переменные – небазисными.
Дополним систему равенств равенством целевой функции, при этом будем считать, что является базисной переменной, которая всегда присутствует в базисе для любой вершины.
Для получения решения составляется начальный допустимый базис, в котором базисные переменные должны быть представлены в виде единичных орт. Это означает, что уравнения, представляющие данную вершину должны включать каждую базисную переменную только в одной строке с коэффициентом, равным 1.
При
выборе начального допустимого базиса
для составления симплекс-
(1)
(2)
(3)
(4)
При
составлении симплекс-таблицы
-в крайнем левом столбце располагаются базисные переменные и ;
-в крайнем правом столбце располагаются правые части ограничений;
-в первой строке располагаются переменные в определённом порядке:
сначала
, потом небазисные переменные, базисные
переменные располагаются в последних
столбцах перед правой частью (ПЧ). Запишем
коэффициенты в СТ(0):
ПЧ | |||||||
1 | - |
- |
0 | 0 | 0 | 0 | |
0 | 1 | 0 | 0 | ||||
0 | 0 | 1 | 0 | ||||
0 | 0 | 0 | 1 |
Рисунок 1.1 Пример симплекс-таблицы
Оптимальность любой из вершин определяется коэффициентами при небазисных переменных в – строке текущей симплекс-таблицы.
Для задачи максимизации данная вершина является оптимальной, если все коэффициенты при небазисных переменных в – строке являются неотрицательными (>0);
Для задачи минимизации данная вершина является оптимальной, если все коэффициенты при небазисных переменных в – строке являются неположительными (< 0).
Если в задаче максимизации (минимизации) у одной небазисной переменной в – строке коэффициент <0(>0), то текущая точка не является оптимальной и необходимо изменить базис. Для этого выбирают небазисную переменную, имеющую максимально отрицательный (положительный) коэффициент в – строке. Выбранная небазисная переменная будет включаться в новый базис, поэтому называется включаемой переменной. Базисная переменная, которая будет выведена из базиса, называется исключаемой переменной.
Исключаемой переменой будет та базисная переменная, которая первой обратится в "0" при переходе в смежную вершину после ввода включаемой переменной.
Столбец включаемой переменной будем называть разрешающим столцом.
Строку исключаемой переменной будем называть разрешающей строкой.
Пересечение разрешающего столбца и строки определяют разрешающий элемент (РЭ).
Чтобы определить исключаемую переменную необходимо:
-разделить правые части всех базисных переменных (кроме - строки) на соответствующие положительные коэффициенты разрешающего столбца;
-выбрать
из полученных отношений
Делить на "0" и отрицательную величину нельзя, т. к. это приводит к отсутствию пересекающейся вершины или к вершине вне ОДР.
Для перехода в смежную вершину необходимо сформировать матрицу перехода B(0), которая определит связь между СТ(0) и СТ(1): СТ(1) = В(0) СТ(0).
Для произвольной квадратной матрице размерности n, имеющей в качестве (n - 1) столбца единичные орты, расположенные в соответствии с единичными ортами единичной матрицы, и одного произвольного столбца с ненулевым элементом на главной диагонали, обратная матрица находится по следующему правилу:
Рисунок 1.2 Транспонированная матрица
Каждый элемент j – столбца делится на РЭ и меняет знак на противоположный, кроме разрешающего элемента.
Искусственный начальный базис. М – метод.
Если исходное ограничение записано в виде равенства "=" или имеет знак " ", то нельзя сразу получить допустимое начальное базисное решение, т. к. при записи задачи в стандартной форме, после введения дополнительных переменных может получиться вариант, когда полученные уравнения не позволяют сформировать начальный допустимый базис в виде единичных орт. В этом случае для нахождения начального допустимого базиса вводятся дополнительно искусственные переменные . Искусственные переменные не имеют отношения к содержанию поставленной задачи, их введение допустимо только в том случае, если соответствующая схема вычислений будет обеспечивать получение оптимального решения, в котором все искусственные переменные окажутся равными нулю.
Переменные R определяют начальный допустимый базис с точки зрения возможного дальнейшего перехода в одну из вершин ОДР. За использование искусственных переменных в целевой функции вводится штраф М. В задаче максимизации М отрицательное (М<<0), в задаче минимизации М положительное (М>>0).
Свойство М: При сложении (вычитании) с любой конечной величиной , определяющей любое значение, которое может принимать каждая из переменных исходной ЗЛП, её значение (переменной М) не меняется, а именно,
При
составлении начальной
Алгоритм получения оптимального решения:
1.
Переход от неравенств к
2. Определение числа базисных и небазисных переменных;
3. Получение - строки для заполнения СТ(0. Для этого необходимо целевую функцию преобразовать к виду ; для чего из соответствующих равенств ограничений выразить искусственные переменные и подставить в строку и привести к рациональному виду;
4. Заполнение СТ(0). Перенесение коэффициентов - строки и равенств ограничений в соответствующие строки и столбцы симплекс-таблицы;
5. Исследование функции на условие оптимальности:
определение разрешающего столбца (по знаку и величине коэффициентов небазисных переменных - строки);
определение включаемой переменной из небазисных переменных;
6.
Определение разрешающей
определение минимального отношения при делении правых частей ограничений на положительные коэффициенты разрешающего столбца;
определение исключаемой переменной из начального базиса;
7.
Определение разрешающего
8. Получение B (0). Замена в матрице начального базиса коэффициентов исключаемой переменной на коэффициенты включаемой переменной; вычисление B (0) по соответствующему правилу;
9. Определение элементов СТ(1) = В(0) СТ(0);
10. Исследование -строки СТ(1) на условие оптимальности.
Если условие не выполнено, то вычисления продолжаются и необходимо повторить пункты 5-10.
Если
условие оптимальности
Поиск решения - это надстройка EXCEL, которая позволяет решать оптимизационные задачи. Ecли, в меню Сервис отсутствует команда Поиск решения, значит, необходимо загрузить эту надстройку. Выберите команду СервисÞ Надстройки и активизируйте надстройку Поиск решения. Если же этой надстройки нет в диалоговом окне Надстройки, то вам необходимо обратиться к панели управления Windows, щелкнуть на пиктограмме Установка и удаление программ и с помощью программы установки Excel (или Office) установить надстройку Поиск решения.
После выбора команд Сервис Þ Поиск решения появится диалоговое окно Поиск решения.
Информация о работе Линейные и нелинейные модели в экономике