Автор работы: Пользователь скрыл имя, 27 Октября 2009 в 13:28, Не определен
Контрольная работа
Проведенная проверка показала, что выполняются все пять предпосылок обычного метода наименьших квадратов. Это свидетельствует об адекватности регрессионной модели исследуемому экономическому явлению.
4. Проверим статистическую значимость коэффициентов b0 и b1 уравнения регрессии. Табличное значение t-критерия Стьюдента для уровня значимости a=0,05 и числа степеней свободы остатка линейной парной регрессии составляет tтаб=2,306.
t-статистики коэффициентов
были определены при проведении регрессионного анализа в EXCEL и имеют следующие значения: tb0»3,202; tb1»7,288 (см. прил. 1). Анализ этих значений показывает, что по абсолютной величине все они превышают табличное значение t-критерия Стьюдента. Это свидетельствует о статистической значимости обоих коэффициентов. На то же самое обстоятельство указывают и вероятности случайного формирования коэффициентов b0 и b1, которые ниже допустимого уровня значимости a=0,05 (см. «P-Значение»).
Статистическая значимость углового коэффициента b1 дает основание говорить о существенном (значимом) влиянии изменения объема капиталовложений X на изменение объема выпускаемой продукции Y.
5. Коэффициент детерминации R2 линейной модели также был определен при проведении регрессионного анализа в EXCEL:
(см. «Регрессионную статистику» в прил. 1).
Значение R2 показывает, что линейная модель объясняет 86,9 % вариации объема выпускаемой продукции Y.
F-статистика линейной модели имеет значение
(см. «Дисперсионный анализ» в прил. 1).
Табличное значение F-критерия Фишера для уровня значимости a=0,05 и чисел степеней свободы числителя (регрессии) и знаменателя (остатка) составляет Fтаб=5,32. Так как F-статистика превышает табличное значение F-критерия Фишера, то это свидетельствует о статистической значимости уравнения регрессии в целом. На этот же факт указывает и то, что вероятность случайного формирования уравнения регрессии в том виде, в каком оно получено, составляет 8,49×10-5 (см. «Значимость F» в «Дисперсионном анализе» прил. 1), что ниже допустимого уровня значимости a=0,05.
Среднюю относительную ошибку аппроксимации определяем по приближенной формуле
где млн. руб. — средний объем выпускаемой продукции, определенный с помощью встроенной функции «СРЗНАЧ» (см. «Исходные данные» в прил. 1).
Значение Еотн показывает, что предсказанные уравнением регрессии значения объема выпускаемой продукции Y отличаются от фактических значений в среднем на 7,1 %. Линейная модель имеет хорошую точность.
По результатам проверок, проведенных в пунктах 3 — 5, можно сделать вывод о достаточно хорошем качестве линейной модели и возможности ее использования для целей анализа и прогнозирования объема выпускаемой продукции.
6. Спрогнозируем объем выпускаемой продукции Y, если прогнозное значение объема капиталовложений X составит 80 % от своего максимального значения в исходных данных:
Среднее прогнозируемое значение объема выпускаемой продукции (точечный прогноз) равно
Стандартная ошибка прогноза фактического значения объема выпускаемой продукции y0 рассчитывается по формуле
где млн. руб. — средний объем капиталовложений; млн. руб. — стандартное отклонение объема капиталовложений (определены с помощью встроенных функций «СРЗНАЧ» и «СТАНДОТКЛОН») (см. «Исходные данные» в прил. 1).
Интервальный прогноз фактического значения объема выпускаемой продукции y0 с надежностью (доверительной вероятностью) g=0,9 (уровень значимости a=0,1) имеет вид:
где tтаб=1,860 — табличное значение t-критерия Стьюдента при уровне значимости a=0,1 и числе степеней свободы .
Таким образом, объем выпускаемой продукции Y с вероятностью 90 % будет находиться в интервале от 43,2 до 58,8 млн. руб.
7. График, на котором изображены фактические и предсказанные уравнением регрессии значения Y строим с помощью диаграммы EXCEL (меню «Вставка» ® «Диаграмма…» ® «Точечная»). Далее строим линию линейного тренда (меню «Диаграмма» ® «Добавить линию тренда…» ® «Линейная»), и устанавливаем вывод на диаграмме уравнения регрессии и коэффициента детерминации R2:
Точки точечного и интервального прогнозов наносим на график вручную (прил. 3).
8. Логарифмическую, степенную и показательную модели также строим с помощью диаграммы EXCEL (меню «Вставка» ® «Диаграмма…» ® «Точечная»). Далее последовательно строим соответствующие линии тренда (меню «Диаграмма» ® «Добавить линию тренда…»), и устанавливаем вывод на диаграмме уравнения регрессии и коэффициента детерминации R2:
Графики линий регрессии, уравнения регрессии и значения R2 приведены в прил. 4. Рассмотрим последовательно каждую модель.
1) Логарифмическая модель:
Значение параметра b1=29,9 показывает, что при увеличении объема капиталовложений X на 1 % объем выпускаемой продукции Y возрастает в среднем на млн. руб.
Коэффициент детерминации R2»0,898 показывает, что логарифмическая модель объясняет 89,8 % вариации объема выпускаемой продукции Y.
F-статистика Фишера логарифмической модели определяется через коэффициент детерминации R2 по формуле
Табличное значение F-критерия Фишера одинаково как для линейной, так и для всех нелинейных моделей, которые здесь строятся (Fтаб=5,32). Так как F-статистика превышает табличное значение F-критерия, то это свидетельствует о статистической значимости уравнения логарифмической регрессии.
Стандартная ошибка логарифмической регрессии также рассчитывается через коэффициент детерминации R2 по формуле
где млн. руб. — стандартное отклонение объема выпускаемой продукции, определенное с помощью встроенной функции «СТАНДОТКЛОН» (см. «Исходные данные» в прил. 1).
Среднюю относительную ошибку аппроксимации определяем по приближенной формуле
Предсказанные уравнением логарифмической регрессии значения объема выпускаемой продукции Y отличаются от фактических значений в среднем на 6,2 %. Логарифмическая модель имеет хорошую точность.
2) Степенная модель:
Показатель степени b1=0,721 является средним коэффициентом эластичности. Его значение показывает, что при увеличении объема капиталовложений X на 1 % объем выпускаемой продукции Y возрастает в среднем на 0,721 %.
Коэффициент детерминации R2»0,873 показывает, что степенная модель объясняет 87,3 % вариации объема выпускаемой продукции Y.
F-статистика степенной модели
также превышает табличное значение F-критерия Фишера (Fтаб=5,32), что указывает на статистическую значимость уравнения степенной регрессии.
Стандартная ошибка степенной регрессии равна
Средняя относительная ошибка аппроксимации имеет значение
Предсказанные уравнением степенной регрессии значения объема выпускаемой продукции Y отличаются от фактических значений в среднем на 7,0 %. Степенная модель имеет хорошую точность.
3) Показательная (экспоненциальная) модель:
где е=2,718… — основание натуральных логарифмов; — функция экспоненты (в EXCEL встроенная функция «EXP»).
Параметр b1=1,019 является средним коэффициентом роста. Его значение показывает, что при увеличении объема капиталовложений X на 1 млн. руб. объем выпускаемой продукции Y возрастает в среднем в 1,019 раза, то есть на 1,9 %.
Коэффициент детерминации R2»0,821 показывает, что показательная модель объясняет 82,1 % вариации объема выпускаемой продукции Y.
F-статистика показательной модели
превышает табличное значение F-критерия Фишера (Fтаб=5,32), что свидетельствует о статистической значимости уравнения показательной регрессии.
Стандартная ошибка показательной регрессии:
Средняя относительная ошибка аппроксимации:
Предсказанные уравнением показательной регрессии значения объема выпускаемой продукции Y отличаются от фактических значений в среднем на 8,3 %. Показательная модель имеет хорошую точность.
Сравнивая между собой коэффициенты детерминации R2 четырех построенных моделей (линейной, логарифмической, степенной и показательной), можно придти к выводу, что лучшей моделью является логарифмическая модель, так как она имеет самое большое значение R2.
ПРИЛОЖЕНИЕ: компьютерные распечатки на 4 листах.
ЗАДАЧА 2
Задача 2а и 2б
Номер варианта | Номер уравнения | Задача 2а | Задача 2б | ||||||||||||
переменные | переменные | ||||||||||||||
у1 | у2 | у3 | х1 | х2 | х3 | x4 | у1 | у2 | у3 | х1 | х2 | х3 | x4 | ||
11 | 1 | –1 | b12 | b13 | a11 | a12 | 0 | 0 | –1 | b12 | b13 | a11 | a12 | 0 | 0 |
2 | b21 | –1 | 0 | a21 | a22 | a23 | 0 | b21 | –1 | 0 | 0 | a22 | a23 | 0 | |
3 | b31 | b32 | –1 | 0 | 0 | a33 | a34 | b31 | b32 | –1 | a31 | a32 | 0 | a34 |